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1. Interesting paradigm for heavy dark matter

2. Several Detection Strategies

4

The Plan
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1. Interesting paradigm for heavy dark matter

2. Several Detection Strategies

4

The Plan

Take Away: Need multi-prong experimental and 
observational approach

Take Away: Bound states in strongly interacting dark 
sectors have masses that span ~40 orders of magnitude
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• Relic abundance set by dark baryon asymmetry 

Strongly Interacting Dark Sector

5

Example: Dark Nuclear Matter

“Dark Nucleon”

“Dark Nucleus”

General Properties

• Theory confines at energy scale ΛΧ
• Spectrum contains massive particle with mx ~ Λx

• Massive particles form bound states with Mx ~ Nx Λx 
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Treat dark nucleus as drop of liquid to determine how 
binding energy depends on number of constituents

Maximum Size of Dark Nucleus 

6

Semi-empirical mass formula 

• Assume no long range force to destabilize dark nuclei

Binding energy unbounded from above!
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Early Universe Formation
Big Bang Dark Nucleosynthesis

Dark nuclei form via fusion processes in the Early Universe

“Nuclear 
Physics”

* Krnjaic & Sigurdson, ’14, Hardy et al, ’14, Gresham, Lou & Zurek, ’17
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Dark nuclei size is limited by how long fusion lasts during 
early Universe 

• Compare Fusion rate to Hubble rate for rough estimate

• Generically find exponentially large states

Dark BBN

8

Fusion in Early Universe
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Dark Nuclear Matter
“Dark Nuggets”

*Gresham, Lou and Zurek, ‘17
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Detection
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Standard Model Couplings
Nucleon Coupling

General Idea: Assume Dark Matter couples to Standard 
Model nucleons via mediator of mass mφ

There are multiple constraints on gn  and gχ depending on 
the mass of the mediator

Detection strategy depends heavily on the 
mass of mediator
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DM Sources Potential

Mediator Mass
Three Regimes

12
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Short Range Mediator
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Dark Matter Form Factor
Finite Size effects
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General Idea: Form factors “encode” the deviation of 
scattering amplitudes from the point particle limit 
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Form Factor Suppression
DM Finite Size effects

XENON 
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Heavy Mediator
Mediator Mass: 10 GeV
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Long Range Mediator
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Form Factor Suppression
DM Finite Size effects
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General Idea: Light mediator differential cross section has 
additional support at low momentum transfer
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Light Mediator
Mediator Mass: eV

*Coskuner, DMG, Knapen & Zurek ‘18
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Extremely Long Range Mediator
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Mediator Coupling Constraints

21

Dark Sector Constraints

* Akin to gravitational collapse

Scalar Coupling gx Bound: Stability of Dark Nuclei

• Fermi degeneracy pressure must balance self-energy due to 
long range attractive interaction*

• Additional repulsive interactions does not help as dark nuclei 
become unbound
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 Λx = MeV,  λ = 200 km, gn ~ 10-23

DMG, Melia and Rajendran ‘18
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Ionization and Scintillation Signals

23

General Idea: momentum transfer during collision 
between blob and single SM atom

• Only small angle scattering due to weak coupling

• Ionization occurs if mom. transfer above ~100 keV

DM

SM Atom

Standard Dark Matter Search
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Ionization/Scintillation

24

Tank: (500 m)3DMG, Melia and Rajendran ‘18

 Λx = MeV,  λ = 200 km, gn ~ 10-23
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Heat Deposition

25

General Idea: Composite DM deposits large amounts of 
energy without necessarily causing ionization/scintillation

• Large DM radius allows multiple SM atoms to 
experience significant change in momentum 

• Example:  Hydrophones in tank of water are sensitive 
to energy deposition of ~ 10 keV/Angstrom 

DM with large radius

DM

SM Atom
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Energy Deposition

26

Tank: (500 m)3
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 Λx = MeV,  λ = 200 km, gn ~ 10-23
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General Idea: Passing DM induces motion in test mass

Acceleration

27

Free hanging test mass

DM

Test Mass
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General Idea: Passing DM induces motion in test mass

Acceleration

27

Free hanging test mass

• Example: LIGO sensitive to Δx ~ 0.1 fm/Hz1/2

DMTest Mass

b

θ
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Tank: (500 m)3
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Extremely Long Range Mediator
 Λx = MeV,  λ = 200 km, gn ~ 10-23
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Conclusions

Focus: Exponentially large composite dark matter

Take Away: Strongly interacting dark sector can give DM 
whose mass ranges over 40 orders of magnitude 

Take Away: Need multi-prong approach to span the full 
parameter space of masses and confi nement scales
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Looking Forward: Mega Dark Matter
Reinvigorated Interest in Composite Dark Matter

Candidates for Mega Dark Matter: Stability

Mega Dark Matter Candidates: 

• Dark Nuclei, DM Nuggets, Dark Quark Nuggets

• Dark Blobs

• Primordial Black Holes

• Axion/Boson Stars

• Solitons (Q-balls, monopoles, etc)

• Basically anything composite!!!

30
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Looking Forward: Mega Dark Matter
Reinvigorated Interest in Composite Dark Matter

Candidates for Mega Dark Matter: Stability

Production Side: 

• Connections to strongly coupled physics

• Production during Cosmological Inflation, Preheating, 
Reheating

• Connection to solitons 

• Production during cosmological phase transitions

31
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Looking Forward: Mega Dark Matter
Reinvigorated Interest in Composite Dark Matter

Candidates for Mega Dark Matter: Stability

Detection Side: 

• Terrestrial probes: direct detection, neutrino and 
alternative detectors

• Gravitational Probes: gravitational waves, lensing, etc.

• Cosmological Probes: CMB anisotropies and BBN

• Astrophysical probes: heating, collisions and indirect 
detection

32
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If this sounds interesting, please join me, Yang Bai, Joseph 
Bramante,  Andrew Long and Jessica Turner at the Mainz 

Institute for Theoretical Physics for

MEGA DARK MATTER
Theory and Detection

Summer 2021

33
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CERN Virtual Activities

https://theory.cern/th-department-virtual-activities

During this time of self-isolation and working remotely, 
CERN has moved to being fully virtually while striving to 

maintain our scientific activities. 

Many of our seminars, coffee hours and scientific activities 
are open to ALL members of the community.

Of perhaps special interest

* BSM Forum (Thurs., 15h00)

* BSM Coffee (Tues., Thurs., 16h30)

* Lattice Seminar (Thurs. 16h30)

* Pub Quiz (Fri., 21h00)

34
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PUB QUIZ
General Idea: Reproduce trivia night that might occur in a 
real pub while maintaining social distancing

• Quiz is hosted in main room by one of three pub masters

• Individual teams use Skype to discuss among themselves

• Usually about 60min-90min on Friday evenings

• Open to all members of the community, including family and 
friends — no physics questions, promise

More info, including mailing list sign up at 
https://theory.cern/th-department-virtual-activities

HOSTED BY YOURS TRULY TOMORROW!

35
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BACK UP
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Heavy Mediator

Collider Constraints
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Short Range Mediator
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Short Range Mediator

Collider Constraints
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Long Range Mediator
Mediator Mass: eV

SIDM constraint

Perturbativity

In-medium effects
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DM Form Factor
Finite Size effects

General Idea: Form factors “encode” the deviation of 
scattering amplitudes from the point particle limit 

Charge Density

ASSUME: Uniform charge density inside dark nucleus

q: Momentum Transfer
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Dark Matter Direct Detection
DM Scattering

General Idea: DM passes through detector, resulting in 
either nuclei/electron recoil or collective mode excitation

DM

SM Detector

pi pf

Differential Scattering Rate per Unit Target Mass
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Dark Matter Direct Detection
DM Scattering

General Idea: DM passes through detector, resulting in 
either nuclei/electron recoil or collective mode excitation

DM

SM Detector

pi pf

Differential Scattering Rate per Unit Target Mass

Target and DM Dependent!
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Differential Rate with Form Factor
Key for Direct Detection

General Idea: Factor out contributions to rate that are DM 
dependent versus detector dependent
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DM Velocity Dist.
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Differential Rate with Form Factor
Key for Direct Detection

General Idea: Factor out contributions to rate that are DM 
dependent versus detector dependent

DM Velocity Dist.

Target Response
DM Form Factor

Mediator “Form 
Factor”

DM Number 
Density

Structure Function S(q, ω) quantifies response of target to 
injection of momentum, q, and energy, ω
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Standard Model Couplings
Nucleon Coupling

General Idea: Dark Matter couples to Standard Model 
nucleons via mediator of mass mφ

Results in spin-independent four fermion interaction with 
specific mediator “form factor”
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Nuclear Recoil
Traditional WIMP Search

General Idea: Dark Matter scatters of single nucleus, which 
then recoils

Effect of DM’s finite radius on detectability depends on how 
much of scattering phase space is suppressed by form factor
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Form Factor Effects

46

General Idea: Effect of form factor depends on how DM 
radius compares to qmax and qmin

• ss: : Cross section for point-like DM scattering off nucleon

Massive Mediator

Maximizing target’s atomic number is key 
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Form Factor Effects
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General Idea: Effect of form factor depends on how DM 
radius compares to qmax and qmin

• ss: : Cross section for point-like DM scattering off nucleon

Massive Mediator

Maximizing target’s atomic number is key 
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Nuclear Recoil Long Range
Enhancement at Low Momentum

Recall: Scattering due to light mediator is enhanced at low 
momentum by 1/q4
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Nuclear Recoil Long Range
Enhancement at Low Momentum

Recall: Scattering due to light mediator is enhanced at low 
momentum by 1/q4

Minimizing detector’s energy threshold is key 


