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Motivation 1

The trajectory of particle physics:
– Going to higher E and L
– Time to move from total rates
– More sophisticated observables available

σ → dσ
dEdφdΘdθ
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Motivation 2

The aim:
– Can analytic knowledge instruct observables?
– Make smart choices of differential variables
– Increase sensitivity by capturing full angular info

3



Higgs-strahlung: Z
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Higgs-strahlung:W
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The 3 angles
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New physics at higher energies

– No new resonances at LHC
– Still sensitive to higher-energy physics
– Effects from higher scales are suppressed

→ show as perturbations to SM result
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Social scale distancing
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EFTs

– Effective Field Theories are handy
– Integrate out heavy physics for tower of
higher-dimension operators

LL(ψL) + LH(ψL, ψH) → LL(ψL) +
∑
i

ci
Oi

Λdim(Oi)−4

– Can truncate series to dim 6 if E ≪ ΛNP
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SMEFT

Standard Model Effective Field Theory offers framework for
parameterising effects of higher-energy physics
– Mostly model-independent
– Mass-dimension 6 operators
– Warsaw basis [1008.4844]

– Get 59 (2499) operators for 1 (3) gens

L = LSM + L(6) + ... L(6) =
∑
i

ci
Λ2

O(6)
i
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The hVV∗/hVf̄f ′ vertex

We have 4 tensor structures of interest:

– hVµVµ [SM-like]

– hVµ (̄fγµf ′) [contact term]

– hVµνVµν [CP even transverse]

– hVµνṼµν [CP odd transverse]
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The hVV∗/hVf̄f ′ vertex

In the parameterisation of [1405.0181],

∆LhV̄ff
6 ⊃ δĝhVV

2m2
V

v
hV

µVµ
2

+
∑
f

ghVf
h
v
Vµf̄γµf

+ κVV
h
2v
VµνVµν + κ̃VV

h
2v
VµνṼµν
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Other contributions

Operators that rescale the hbb̄ and V̄ff ′ contribute

Also have to account for Zγ terms

κZγ
h
Z
AµνZµν + κ̃Zγ

h
Z
AµνZ̃µν

For ŝ ≫ m2
Z just shifts parameters:

κZZ → κZZ + 0.3 κZγ κ̃ZZ → κ̃ZZ + 0.3 κ̃Zγ
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The vertex in SMEFT

Which Warsaw basis SMEFT operators contribute to this
vertex?

12 CP-even and 3 CP-odd (pre EWSB)

See [1008.4844] for operator notation.
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OH□ = (H†H)□(H†H) O(3)
HL = iH†σa

↔
DµHL̄σaγµL

OHD = (H†DµH)∗(H†DµH) OHB = |H|2BµνBµν

OHu = iH†
↔
DµHūRγµuR OHWB = H†σaHWa

µνBµν

OHd = iH†
↔
DµHd̄RγµdR OHW = |H|2WµνWµν

OHe = iH†
↔
DµHēRγµeR OHB̃ = |H|2Bµν B̃µν

O(1)
HQ = iH†

↔
DµHQ̄γµQ OHW̃B = H†σaHWa

µν B̃µν

O(3)
HQ = iH†σa

↔
DµHQ̄σaγµQ OHW̃ = |H|2Wa

µνW̃aµν

O(1)
HL = iH†

↔
DµHL̄γµL
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The hVV∗/hVf̄f vertex
These contribute to the earlier parameters:

δĝhVV =
v2

Λ2

(
cH□ +

3cHD
4

)
ghVf =− 2g

cθW
v2

Λ2
(|Tf3|c

(1)
HF − Tf3c

(3)
HF + (1/2− |Tf3|)cHf)

κVV =
2v2

Λ2
(c2θWcHW + s2θWcHB + sθWcθWcHWB)

κ̃VV =
2v2

Λ2
(c2θWcHW̃ + s2θWcHB̃ + sθWcθWcHW̃B)

17



The analytic amplitude

How do we extract information about these corrections?

By using knowledge of the amplitude’s analytic structure...
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The analytic amplitude
Begin with 2 → 2 process f(σ)̄f(−σ) → V(λ)h in the helicity
amplitude formalism:

Mλ=±
σ = σ

1 + σλ cosΘ
2
√
2

ggVf
cθW

1

γ

[
1 + 2γ2

(
ghVf
gVf

+ κVV − iλκ̃VV

)]

Mλ=0
σ = − sinΘ

ggVf
2cθW

[
1 + δĝhVV + 2κVV +

ghVf
gVf

(
−1

2
+ 2γ2

)]

Neglect terms subdominant∗ in γ =
√
ŝ/(2mV)
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The analytic amplitude

Leading SM is longitudinal (λ = 0)

Leading effect of κVV and κ̃VV is in transverse (λ = ±1)

The LT interference term vanishes if we’re not careful...
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The analytic amplitude

Full amplitude can be written as:

Ah(ŝ,Θ, θ̂, φ̂) =
−i

√
2gVℓ

ΓV

∑
λ

Mλ
σ(ŝ,Θ)d

J=1
λ,1 (θ̂)e

iλφ̂

Wigner functions d J=1
λ,1 (θ̂), hats indicate positive

helicity leptons rather than positive charge
[1708.07823].
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The 3 angles

Beam Axis

Plane of pp-Vh
Plane of V-ll

In Vh CoM
In ll CoM
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The analytic amplitude

Squared amplitude for Vh can be written as:

∑
L,R

|A(ŝ,Θ, θ, φ)|2 =αL|Ah(ŝ,Θ, θ, φ)|2

+αR|Ah(ŝ,Θ, π − θ, π + φ)|2

with αL,R = (gVlL,R)
2/[(gVlL)

2 + (gVlR)
2]

Also define ϵLR = αL − αR ≈ 0.16, 1 for Z, W
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The analytic amplitude
We collect into 9 angular structures:

= aLL sin2Θ sin2 θ

+ a1T T cosΘ cos θ
+ a2T T(1 + cos2Θ)(1 + cos2 θ)
+ cosφ sinΘ sin θ(a1LT + a2LT cos θ cosΘ)

+ sinφ sinΘ sin θ(ã1LT + ã2LT cos θ cosΘ)

+ aT T′ cos 2φ sin2Θ sin2 θ

+ ãT T′ sin 2φ sin2Θ sin2 θ

and thus 9 angular observables.
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observables
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The analytic amplitude

LT interference term dominated by:

∼ a2LT
4

cosφ sin 2θ sin 2Θ +
ã2LT
4

sinφ sin 2θ sin 2Θ

NB: these terms vanish on integration of ANY angle!
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aLL G2

4

[
1 + 2δĝhVV + 4κVV +

ghVf
gVf
(−1 + 4γ2)

]
a1
TT

G2σϵLR
2γ2

[
1 + 4

(
ghVf
gVf

+ κVV

)
γ2
]

a2
TT

G2

8γ2

[
1 + 4

(
ghVf
gVf

+ κVV

)
γ2
]

a1
LT −G2σϵLR

2γ

[
1 + 2

(
2ghVf
gVf

+ κVV

)
γ2
]

ã1
LT −G2σϵLRκ̃VVγ

a2
LT −G2

2γ

[
1 + 2

(
2ghVf
gVf

+ κVV

)
γ2
]

ã2
LT −G2κ̃VVγ

aTT′ G2

8γ2

[
1 + 4

(
ghVf
gVf

+ κVV

)
γ2
]

ãTT′ G2

2
κ̃VV
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Summary of sensitivity
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Total rate sensitivity
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Proposal

– Use MadGraph-Pythia-ROOT to generate and cut
samples for SM (NLO) and EFT (NLO) and BGs (K-factor)

– Design angular method to extract ai parameters
– Perform χ2 tests to establish 1σ bounds

But are these angular structures kept in tact?
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Proof of concept: Zh

How to probe κZZ and κ̃ZZ?

Flip signs in regions to maintain positive sin 2θ sin 2Θ

∼ a2LT
4
cosφ sin 2θ sin 2Θ +

ã2LT
4
sinφ sin 2θ sin 2Θ

→ expect cosφ distribution for CP even
→ expect sinφ distribution for CP odd
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Proof of concept: Zh
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Wh angles

In Wh we have to deal with ambiguity in leptonic geometry

Comes from ambiguity in sign of neutrino’s pz
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Wh angles
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Method of moments 1

We have a square amplitude |A|2 =
∑

i ai(E)fi(φ,Θ, θ)
– Look for weight functions wi(φ,Θ, θ) such that:

⟨wi|fj⟩ =
∫

d(φ,Θ, θ)wifj = δij

– Can then pick out angular moments ai:∫
d(φ,Θ, θ)wi|A|2 = ai
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Method of moments 2

Look at matrix Mij = ⟨fi|fj⟩:

M =



512π
225 0 128π

25 0 0 0 0 0 0
0 8π

9 0 0 0 0 0 0 0
128π
25 0 6272π

225 0 0 0 0 0 0
0 0 0 16π

9 0 0 0 0 0
0 0 0 0 16π

225 0 0 0 0
0 0 0 0 0 16π

9 0 0 0
0 0 0 0 0 0 16π

225 0 0
0 0 0 0 0 0 0 256π

225 0
0 0 0 0 0 0 0 0 256π

225


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Method of moments 3

– Find that wi ∝ fi for all except i = 1, 3

– Rotate the (1,3) system to an orthogonal basis
– We just use discrete method:

ai =
N̂
N

N∑
n=1

Wi(Θn, θn, φn)
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Results 1

– Limit to interference terms

– Contact term constrained by quadratic E-dependence

– Implement method of moments to constrain other
couplings

– All results for int. luminosity 3 ab−1 (HL-LHC)
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Summary of sensitivity
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Results: contact

Bounds on contact terms:

– Quadratic EFT contact term in aLL dominates at high E

– Need to use highest-energy bins: too sparse for MoM

– Ensure EFT validity

– Get bounds:

|ghWQ| < 6× 10−4, |ghZp| < 4× 10−4.
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Results: Zh

Bounds on other Zh couplings:

– Use method of moments

– Get percent-level bounds on κZZ in (κZZ, δghZZ) plane

– Bounds are competitive and complimentary

– For independent CP odd coupling get bound:

|κ̃pZZ| < 0.03.
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Results: Zh
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Results:Wh

Bounds on other Wh couplings:

– Use method of moments

– Get percent-level bounds on κWW in (κWW, δghWW) plane

– Bounds are competitive and complimentary

– For independent CP odd coupling get bound:

|κ̃WW| < 0.04.
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Results:Wh
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Results: combination

– Can combine Zh and Wh results

– This assumes EW symmetry is linearly-realised

– Use correlations

– Get tighter bounds
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Results: combination
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Note:WW andWZ

– If EW is linearly-realised, can probe this plane with
WW/WZ

– For more details see paper and refs therein

– Can use the relations as a test of EW realisation
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Conclusions

– Move to more sophisticated observables

– Use full differential information to resurrect elusive
effects

– Rely on preservation of structures

– Get competitive and complimentary bounds

– Future: extend to more processes → global fit

For more, see [1912.07628, 1905.02728]
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Stay home, stay safe, stay positive
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Back up: simulation

FeynRules NLOCT

MG5_aMC@NLO
with NNPDF MadSpin

Pythia8

LO NLO

Define model

Calculate rules

MG5 Framework

Event generation

Parton showering

Hadronisation

Fragmentation

UFO file

HEMPC file

C++ Analysis
using

ROOT, HEPMC
FastJet

ROOT file

ROOT TMVA

Final ROOT file

Triggering

Lepton isolation

Jet algorithms

Selection cuts

Cuts tuned by

Boosted Decision Trees
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Back up: backgrounds
Zh:
– Zbb
– ggF-h-ZZ
– ggBox-Zh
– Z+jets

Wh:
– Wbb
– tt-WWbb SL
– tt-WWbb FL
– W+jets
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