Recent progress in Lattice QCD

Christine Davies University of Glasgow HPQCD collaboration

Applications of Lattice QCD/Lattice field theory

Particle physics

QCD parameters

Precision SM tests

II. due a star et a

Hadron spectrum

Hadron structure

Proceedings LATTICE2019
Wuhan, China:
https://pos.sissa.it/363/

CKM elements

Theories beyond the Standard Model

Axions

Quantum gravity

Astrophysics

Glueballs and exotica QCD at high temperatures and densities Nuclear

Nuclear masses and properties

Nuclear physics

 condensed matter physics computational physics
 computer science
 Quantum computing ... k low-energy strong interactions are a major Aplication in testing the Standard Model

of QCD - lattice QCD - is key to compare SM and low-energy experimental tests for new physics

Lattice QCD: perform path integral on a discrete space-time lattice Must be able to determine results in physical continuum limit.

Final accuracy depends on :

- control of lattice spacing dependence
- tuning of quark masses
- normalisation of operators in matrix elements

A variety of quark formalisms exist; pros/cons suit them to different physics programmes. Comparison of results from different formalisms is important

e.g.: Parameters for gluon field configurations generated with Highly Improved Staggered (HISQ) sea guarks ²2nd generation" MILC HISQ, 2+1+1 $m_u = m_d$ 0.14 a = 0.03 fmlattices inc. c quarks in sea $= m_l$ a = 0.042 fm= 0.06 fm0.12 HISQ - very a = 0.09 fmmass of u,d accurate quarks↓ 0.1 discretisation leading error a⁴ m_{π}^2 / GeV 0.08 HPQCD, hep-lat/ 0610092. 0.06 $m_{u,d} \approx m_s/10$ *physical^{0.04} $n_f = 1 + 1 + 1 + 1$ $m_{u,d} \approx m_s/27$ m_{u/d} 0.02 m_{π^0} Volume: 0 135 MeV 0.005 0.02 $m_{\pi}L > 3$ 0.025 0.01 0.015 0.03 () a^2/fm^2

Physical u/d masses also available in other formalisms

Hadron Correlation functions constructed from valence quark propagators

Connected 2-point function (for meson)

(quark-line) Disconnected 2-point - difficult and noisy

Hadron Spectrum

Ground-states very accurate for flavour non-singlet mesons - use to tune quark masses accurately. Baryons also improving. Issue now is adding in QED (previously often estimated)

Excited and exotic states - experimental interest high (Belle/ BES3/JLAB/LHCb/PANDA) R. Edwards, review LAT2019 S. Prelovsek, review, 2001.01767

Need large basis of operators, O, including multi(=two at present)-hadron operators to determine many energy levels in a given channel as a function of volume. Allows mapping of scattering amplitudes to locate unstable resonance poles.

Aim for very complete spectra and search for exotica - hybrids, $\overline{q}qG$ tetraquarks $\overline{q}\overline{q}qq$ etc

Has not yet been possible to do calculations at physical u/d quark masses or multiple lattice spacings, so precision of results is not high.

Example: charmonium spectrum

Hadspec, 1610.01073, 1709.010147

'Hybrid' states - lowest multiplet. Arise from coupling to 1⁺⁻ gluonic excitation which adds ~1.3 GeV. Same picture seen for baryons, light mesons etc.

No sign of tetraquark state that could be Zc+(3900).

See also: Prelovsek et al, 1405.7623, 1503.03257

1607.05214,1810.12285,1904.04197

Ground-states : adding QED + isospin-breaking effects FLAG: 1902.08191

QED and m_u - m_d effects for valence quarks are each ~ few MeV. Estimated in the past, now being included. Most calculations ignore effects for sea quarks - 'Quenched QED'

$$\begin{split} S_{\rm Feynman} &\propto k^2 |A_{\mu}^{\rm QED}(k)|^2 & \text{Choose A from Gaussian dist.} \\ & \text{Quark electric charge} & \text{in mom. space, setting zero-modes to zero: (QED)_L} \\ U_{\mu}^{\rm QED} &= \exp(-i e_q a A_{\mu}^{\rm QED}(x + a \hat{\mu}/2)) & \text{Feed into Dirac} \\ & \text{eq. as for gluons} \end{split}$$

Must allow for finite-volume effects from long-range Coulomb interaction : BMW:1406.4088

(n-p mass diff.)

= 0.7 MeVfor L=3fm and Q=1 Known higher orders in 1/L

Hadron electric charge

 $M_L = M_\infty - Q^2 \alpha \frac{\pi}{2L}$

Stochastic Approach

Simply include QED field in calculation; noisy for light quarks, but very accurate for heavy

Determining quark masses from lattice QCD

Lattice quark masses tuned very accurately from ground-state meson masses, now inc. QED. Issue is accurate conversion to \overline{MS}

Weak decays probe hadron structure and quark couplings. (Semi)-leptonic decays and mixing calculable in lattice QCD s. Gottlieb, review LAT2019

Lattice QCD results for K/ π decay constants

Combine w. ratio of exptl leptonic decay rates:

 $\frac{|V_{us}|}{|V_{ud}|} = 0.2313(5)$

Tensions at $\sim 2 \sigma$ with Vus from semilept. K decay and first-row unitarity.

FNAL/MILC:1809.02827

Electroweak corrections to superallowed nuclear β decay affect Vud and must be pinned down.

Di Carlo et al:1904.08731 + Martinelli LAT2019 $\frac{\Gamma(\pi/K_{\mu} \leftrightarrow \mu \overline{\nu}[\gamma])_{\overline{s}}}{\text{Now calculate QED radiative corns in lattice QCD. So far agree with previous estimates. Extend to heavy mesons, semilept. decays$

Semileptonic form factors

Encode QCD meson structure info. from which differential rate calculated, up to CKM factor.

e.g. $B \to D^* \ell \overline{\nu}$ A. Lytle, review LAT2019 (exclusive) expt. + lattice QCD gives Vcb.

 $\langle D^*(\vec{p}) | V^{\mu} - A^{\mu} | B(\vec{p} = 0) \rangle$ $A_0(q^2), A_1(q^2), A_2(q^2), V(q^2) = (p_i - p_f)^2$

Issues for form factor calculations are :

• Discretisation errors, operator normalisation (as for decay constants)

• Dependence on q² . Early calculations done for A₁ at zero recoil (q²_{max}), compared to expt. extrapolated to that point. MUCH better to compare direct to expt. across FULL q² range.

Large B mass and q² range make this hard - much work going on

For B/D* see FNAL/MILC, 1906.01019

Vaa'

 $0 < q^2 < (M_i - M_f)^2$

 $|\vec{p}_f|_{q^2=0} = \frac{M_i}{2} - \frac{M_f^2}{2M_i}$

differential distributions for W decay to (massless) μ or (massive) τ

 $R(D^*)|_{\rm SM}=0.258(5)$ hflav $R(D^*)|_{\rm Belle}=0.283(23)$ 1910.05864

J. Harrison et al, HPQCD, in prep.

lepton universality test $R(J/\psi) = \frac{\text{Br}(B_c \to J/\psi \,\tau \overline{\nu}_{\tau})}{\text{Br}(B_c \to J/\psi \,\mu \overline{\nu}_{\mu})}$

We find, in SM: $R(J/\psi) = 0.2636(37)$ **PRELIMINARY** close to R(D*) First LHCb result : $R_{J/\psi} = 0.71(17)(18)$ LHCb, 1711.05623

LHCb aim for 2% in R with 300fb⁻¹ LHCb, 1808.08865

Precision tests of the Standard Model $B_{s/d} \rightarrow \mu^+ \mu^-$

rare process that may give access to BSM physics

W

 \mathbf{W}

V

Conclusions

Lattice QCD continues slow but steady progress Precision quantities, such as hadron ground-rates masses and decay constants continue to improve. Progress now is through inclusion of QED and d-u mass difference effects.

Harder calculations, such as those of exotic spectroscopy, semileptonic form factors, QCD effects on a_{μ} , are improving through competition between different groups. The range of calculations is growing e.g. in baryon

physics, not discussed here.