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OUTLINE

* Motivation for precision calculations
» Sketch of “typical” calculations

* Concepts/properties of gauge theories for perturbation theory

1. Factorization of Infrared Divergences
2. Unitarity
3. The dream of computing in exactly D=4.

* |Local factorization at two-loops [work with R. Haindl, G. Sterman, Z. Yang, M. Zeng]
 Jowards D=4 exactly, in practice

e Qutlook



o Stunning high precision measurements at the LHC

* |Leading to a need for cutting edge detailed (differential)
perturbative computations.

Motivation

* Precision can probe unexplored territories beyond the SM

Franceschini, Panico, Pomarol, Riva, Wulzer
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April 2020 CMS Preliminary

CMS measurements
vs. NNLO (NnLo) theory

7 TeV CMS measurement (stat,stat+sys) F——0——
8 TeV CMS measurement (stat,stat+sys)

13 TeV CMS measurement (stat,stat+sys)
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Current precision in diboson production
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Projected sensitivity to new physics



Kosower, Maybee;...
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Structure of “interesting” events
In colliders

o Scattering ¢ Long-

system distance
from short- described
distance by hadrons

Interactions

Factorization

c|0| =f,®f ®0;|O| + small

Collins, Soper, Sterman

Perturbation theory

ot [@] =[ dPhaseSpace |Amplitude :
0

6;=0. + 0.+ 667+ 50 + ...
Y Y i i

—
more diagrams and more integrations



amazing computational skills

Powerful schemes which have lead to impressive breaktroughs.



The effect of higher orders

Higgs rapidity distribution at N3LO

12

 Each order offers a leap In
precision

* Probes the convergence pattern
of the series.

 Reduced sensitivity to
unphysical scales.

DreII -Yan production at N3LO
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Duhr, Dulat, Mistlberger Dulat, Mistlberger, Pelloni




this is how the game is played now...



A wish list...

POSSIBLE
PROCESSS Phenomenology
CLASS EXAMPLES STATUS motivated
GOAL
HW,Z,WH,ZH N3LO N4LO
jet inclusive,
diboson, top-pair, NNLO N3LO
photon-jet,...
ttH,diphton+jet, W
W/ZZ/Z\WN+jet, NLO NNLO
top-pair+jet,...

Are we ready for such a leap?




The demands for precision will be
even higher...

The techniques need to become
scalable, an order of magnitude
more complicated problems

Strong desire for new solutions
which can supersede very
ingenious techniques developed
over a span of decades.

Time for reinvention...and thinking
now about the problems of the
next generation.




Typical calculations

. ) D=4-"2¢
ot [@] = Z dPhaseSpace |Amplltude| OV and IR
final—states © O divergences

Amplitude = Z ¢; Master; = Z d, Polylogs,(momenta) = Numbers
j k
(mostly) Analytic

Z dPhaseSpace | A \2 = Z [ dPhaseSpace | A \2 +J dPhaseSpace | A \2
sing o)

final—states O final—states

reg

Analytic Numerical
Universal Monte-Carlo



Analytic versus Numerical

* Progress for integration over phase-space of final-states in differential cross-
sections has been made by developing numerical methods.

* Progress for loop amplitude integrations has been made mostly with analytic
methods.

* The latter are algorithmic. But the computational cost scaling is a, perhaps
unsurmountable, challenge for the future.

 \We see, In recent years, efforts to replace major pieces of the “analytic’-
algorithmic chain for amplitudes with numerics.



Two and three-loop amplitudes for Higgs production numerically

Amplitude = Z ¢; Master; = 2 apiouyiogsycmonentay = Numbers
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. . . . . Monte-Carlo integration over infrared treated
Solving ditterential equations numerically Feynman parameter integrals (sector decomposition)

Borowka, Greiner, Heinrich, Jones,
Kerner, Schlenk, Zirkel
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Two-loop planar master integrals for pp — H + 2jets

Amplitude = 2 ¢; Master; = Z apiouyiogsycmonentay = Numbers

Direct solution of system of
differential equations
for master integrals along

curves connecting any two
points.

Abreu, Ita, Moriello, Page, Tschernow, Zeng

Points within small/overlapping
patches in the space of kinematic

Solution as a controllable series
expansion in a single variable!

Moriello

t
1.0

| | ' | 6 kinematic invariants /
M many thresholds




Are we exploiting
all we can?

Notwithstanding the progress and successes in perturbative QCD,
and the impressive new mathematical techniques that keep emerging,
our methods often seem to slice and dice physical cross-sections in unnatural ways...

Two properties of gauge theories,

1. Factorization of infrared singularities
2. Unitarity

can be further exploited.



Concepts that can bring further progress
INFRARED FACTORIZATION

e UV Renormalized scattering amplitudes for well-
separated final-states take a simple factorized form

Amplitude = hard - soft - H jet. .

<
Ng

An
all-orders

- “soft” and “jet” functions contain all divergences. theorem

e These are universal functions. For any new process §<§ ‘D
we should need to compute only the “hard” function.

e So far, we do not have a way to compute the “hard”

function directly Ma; Erdogan, Sterman; Schwartz;
Collins



How would we like to use

factorization?
Amplitude = E erdiaster = Z dirPelylogsrGromentar»= Numbers
J k
A (k) integrand

— [dk] Ak)y=|S|F [dk] m of hard function
Analytic Numerical
Universal process-dependent

iIntegration

- From factorisation we could identify, remove and integrate separately the

singular parts of amplitudes.
- This procedure Is universal...can be applied to any process, irrespectively
of the complexity of its final state, always requiring the same number of

iIntegrations.



Local infrared factorization

Amplitude valid after

Factorization theorem Hard = - .
Soft - Jets integrations are performed

Is it also valid locally, for the integrands? In other words, does a local
integrand representation for the hard function exist which is free of

singularities”? oA (k r c IR or UV req
A L - e Finite
S (k)7 (k)

Main arguments in an all-orders proof [Ma 2019] are local
(power-counting, local subtractions and gauge symmetry)

A fully local formulation of the factorization theorem,
for the purposes of using it as a technigue to compute amplitudes, is still missing.



Concepts that can bring further progress

UNITARITY
e Probabilities are finite for observables that
can be computed perturbatively (infrared {
safe observables).

* Divergences cancel in sums of “partonic” »

cross-sections. ¢ 0] = Z Crinal—state | O]

e So far, we do not have a way to make final=state

these cancelations manifest, before B Z [@] n [@]
performing very tough integrations. Cfingl<stare gy, | malstate reg

final—state

— Z Gfinal—smte [@]

final—state

reg.



How would we like to use

UNITARITY?
) !
Recall the optical theorem
Cross-sections for diverse parton multiplicities
can be obtained from cuts of a forward . N
scattering amplitude. .

We would like to have a “local” formulation of i

the optical theorem.

Putting together the integration domains of the

diverse cuts in a clever way, aligning all of their ¢

singularities and cancelling them before ;
integration.
50 + 00 — OO0 + OO
~ 2JETS 2 or 3 JETS
N 6-dim phase-space 9-dim phase-space

+ 4-dim loop integration

FINITE



Achieving factorization and
unitarity locally

e | et’'s dream that we can make both infrared factorization
and unitarity completely local.

e Then, we will be able to define cross-section integrands for
infrared-safe observables which are integrable in exactly
D=4 dimensions.

e No need for regularization (except, maybe, for computing
ONCE at each loop order universal finite remnants of the
ultraviolet and the infrared regions).



NLO cross-sections
computed in exactly D=4

FACTORIZATION+UNITARITY

Local UV, soft and collinear approximations for one-loop
amplitudes to remove their singularities. Nagy, Soper 2003

Local factorization of infrared approximations Assadsolimani,
Becker, Weinzierl 2010

Numerical integration methods for the finite remainders and
finite intervals at any loop order Becker, Weinzierl 2012

Unitarity to combine singular contributions of loop and phase-
space integrations. Seth, Weinzierl 2006

Durham 4-jet

analvtical
numerical ===

Becker, Gotz, Reuschle, Schwan, Weinzierl (2012)

UNITARITY (alone)

D. Soper, 1998

e"+e” — 3jets at NLO

numerical
4.127 + 0.008 + 0.025
1.565 + 0.002 + 0.007
6.439 + 0.010 + 0.022) x 10~}
2.822 4+ 0.005 + 0.009) x 101

6.159 & 0.011 + 0.016) x 102
3.009 &+ 0.006 & 0.007) x 102

( )
( )
(1.296 & 0.002 % 0.004) x 10~1
( )
( )
(1.501 & 0.003 % 0.003) x 102

moments of thrust distribution



A Don Quijotian approach?

...against “giants” (state-of-the-art methods)

at NLO, NNLO and N3LO.... (so far)

Amplitude = Z ¢; Master; = Z d, Polylogs,(momenta) = Numbers
k

J

Unitarity and Integrand
Reduction Methods at one
INLO revolution] and now
two-loops [first five point
QCD amplitudes]

Automatization of
Integration by Parts
reductions [Laporta and
many improvements
thereafter, e.g. finite fields]

Differential equations /
Canonical basis

Automation of asymptotic
expansions

Mellin-Barnes / Sector-
decomposition

e Symbol and Coproduct

e  Systematization of Ellptic

polylogaritmsn » But, we now have illuminating proofs of
amplitude factorization,

* deeper understanding of integrable
singularity structure and better numerical
integration formalisms

* while established methods somewhat
struggling for next generation problems....



Origin of infrared divergences
and local factorization



“Infinities” from classical
behaviour

o0 coe 0 coe 1 1
[ JE.. , =[ dE.. — __ ,
e E?—w+id - w \E—w+i6 E+w-1id
+ ImE

e The poles can lie inside the

domain of integration. o

. ReE

w—=>w—10WItho — 0



“Infinities” from classical
behaviour

o0 coe 0 coe 1 1
[ JE.. , =[ dE.. — __ |
e E?—w+id - w \E—w+i6 E+w-1id

tImE

e The poles can lie inside the

domain of integration. o

e |f we can deform the path of — Rek
integration away from the
poles, then they lead to no
singularities

w—=>w—10WItho — 0



Soft massless particles

JOO dE...+
- (E + 10) (E — i0)

e Poles due to soft massless
narticles. t ImE

* [hese singularities pinch the
integration path from both
sides.

ReFE

e Condition for a TRUE INFINITY




Collinear massless particles

(1=x)-p
A second source of infinities due P /ﬁ
x o

to massless collinear particles. p
A singularity of one particle in t imE
the lower half-plane lines up with
the singularity of a collinear particle 1
particle in the higher half-pane. ..
3 ........... :
The singularities pinchthe 77 0 e ?' ReE

integration path from both sides.

We cannot deform the path, a
condition for a TRUE INFINITY!




Pinch singularities

e To know if a singularity develops, we need
to study the behaviour of the integral in
the vicinity of the pinch surface.

e \We can calculate a degree of divergence.

e Scale variables which are perpendicular to
the pinched surface with a small
parameter and calculate the scaling of the

integrand as the parameter is driven to
ZEero.

Soft  kH ~ 50, d*k ~ 6*

Divergent: n<0
Integrand: d4kj(k) ~ O" .

Convergent: n>0

T—-6-T, 6~0



Removing singularities

e Once a pinch surface which
yields a singularity is identified,
then we can remove the
singularity with a subtraction.

A = [ |dk|F (k)



Removing singularities

e Once a pinch surface which
yields a singularity is identified,
then we can remove the
singularity with a subtraction.

A = [[dk] F (k)

no singularity

- J[dk] F (k) — tF (k)|

approximation

integrand of integrand on
singular surface



Removing singularities

e Once a pinch surface which
yields a singularity is identified,
then we can remove the
singularity with a subtraction.

A = [[dk] F (k) //
no singuiarity

_ J[dk] F() ~ 1F 0] —m e

+J[dk] tf/],(k) —p ...SOft Or jet



Nested subtractions

Ma; Erdogan, Sterman; Collins;

* Singular regions are Collins, Soper, Sterman
Interconnected. How can we

create systematically an
approximation of the loop
integrals in all singular regions??

* Order the singular regions by
their “volume”




Nested subtractions

Ma; Erdogan, Sterman; Collins;

Singular regions are Collins, Soper, Sterman
Interconnected. How can we

create systematically an
approximation of the loop
integrals in all singular regions??

Order the singular regions by
their “volume”

Subtract an approximation of the
integrand in the smallest volume




Nested subtractions

Ma; Erdogan, Sterman; Collins;

Singular regions are Collins, Soper, Sterman
Interconnected. How can we

create systematically an
approximation of the loop
integrals in all singular regions??

Order the singular regions by
their “volume”

Subtract an approximation of the
integrand in the smallest volume

Then, proceed to the next
volume and repeat until there are
no more singularities to remove.




Nested subtractions

Ma; Erdogan, Sterman; Collins;
* The procedure of nested Collins, Soper, Sterman
subtractions has a solution for
the finite remainder at any loop
order as a Forest formula
(similarly to BPHZ of UV
renormalzation)

e |tis valid term by term in an
amplitude or a Feynman diagram.

* This forest formula structure
combined with gauge symmetry,
gives rise to the factorization of
gauge theory amplitudes in terms
of Jets, Soft and Hard fucntions.




An one-loop example

N / d®k; 1
OX = —
m% A1 A AsAy

e One-loop massless box has
both soft and collinear

singularities
e A soft singularity occurs in a d'hy dk < O
2
single point in momentum Az A (226 DR 2R o)t
space (smallest volume). Needs
. d d y
to be subtracted first. Pha | Ak ~ 05372,

A1A2A3A4 AlAgStiﬁl(l — 5131)

e A collinear singularity occurs in
an one-dimensional space
(larger volume). Needs to be
subtracted after the soft.




An one-loop example

e | et’s focus on the soft-
subtractions which come first.

* Need to construct an
approximation of the integrand

In the soft limits. ; te, : A — A, i=1,2 3,
OR

th - A 4 — 1. (Nagy Soper)

e Options are not unique. Can
have significant differences in

their UV behaviour. : / d%%, N,
Boxp=(1— Y ts |Box = 1 TBox

A A
Npox =1— =2 — =2,
t S




An one-loop example

The subtracted integral is now
finite in all soft limits.

Observation: The “soft”

counterterms are easier to
compute than the original ts, Box(s,t,€) =tg Box(s,t,e) =
integral (triangle integrals)

tSQ BOX(S7 t, 6) — t54 BOX(S, If, E)

The subtracted integral does
not have quadratic poles In
epsilon.

In fact, it does not have single
poles in epsilon either....




An one-loop example

| et’s consider a collinear limit

Observation: The “soft” counterterms
are easier to compute than the original
integral (triangle integrals)

The collinear limit approximation is
potentially UV divergent.

We introduce a UV counterterm to the
Collinear counterterm as well (Nagy,
Soper).

. d _wt N
In this example, the numerator of the /d kdl Noox o VBoxly—ayy, |
collinear counterterm vanishes. irz | A1AzAsAy Ay Agstay (1 — zq)

..which explains why our soft-
subtractions sufficed to yield a finite
result. NBox\m:—xlpl




Does the method work at two-loops?

A complicated web of interconnected singularities....






Nested subtractions at 2-
loops

Order of subtractions:
- double-soft

- soft-collinear

- double-collinear

- single-soft

- single-collinear

Approximations in singular
regions do not need to be strict
limits!

Good approximations should not
introduce ultraviolet divergences

Good approximations should be
easy to integrate exactly.




Example: two-loop
Cross-box

two-loop single single
limits soft collinear
2 1ls lc
FXbOfC — )((b)oa:—l_F)((bo):c—l_F)(( )

box’

N
F) >

bor Ay Ay Ay Ay As Ag Ay

F<1C)=[11] 1 [J\@,] [ N5]
Xbox A1A2 BlB2 (1—371) A4A5A6A7 k1=—z1p1 A4A5A6A7 ko=0

_[ 11 ] 1 {[ N; ] _[ N ] }

AsAs ByBs| s(1 — x3) AgAsA6Ar | _ AAsAgA7 |, _

243 B 31 13 1 i\ﬁﬁ 7 ks=—2ps AT k=0 A1A2A3
B [A4A5 B B4B5] [A1A2A3A6A7]k5m3p3

on A A
AgA7r  BegBr| | A1 Ay A3 Ay As k5:—$4p4.

|

double
-soft

N

Ay As AgAr

double
-collinear

:| k2:0




Example: two-loop
Cross-box

d%ky dk
Xboxﬁn — / d2 d5 FXboaj — O(GO).

12 T2

2

Fxo ) = [Grly) +inG1(y)] log (“_

S

Er(y) = —8m* Lis(y) + 8 Lis(y) log(1 — y)* — 28 log(y) Liz(y) log(1 — y) — 18 Liz(y) log(y)’

17 1
+44 Liz(y) log(1 —y) + 96 Liz(y) log(y) — 188 Lia(y) + o T+ 15 1o8(1 - y)*
25 3

+7 log(y) log(1 —y) m* — — 7" log(1 — y)* — 5 log(y)* 7" + log(y) log(1 — y)°

+44 S12(y) log(1 — y) — 52 S12(y) log(y) + 84 S13(y) + 88 Saa(y) — 44 (3 log(1 — y)

1 9

—4 log(y) G5 — 7 log(y)" +log(y)” log(1 — y) — 7 log(y)* log(1 — ),




Application to a class of

one-loop amplitudes

e Consider the process for the
production of a heavy
colourless final-state from the
scattering of a massless quark-
antiquark pair.

 This encompasses a large set
of processes (multi Z,W, photon
production and combinations)

e Easy to verify at one-loop that a
simple set of local
counterterms exists for all these
Processes.




Application to amplitudes

1
N - =
/
. L - T
e Per tree-diagram, there is one _ - -
1-loop diagram with a soft p >t .
singularity. Z ; -
\
T — — -
e The soft limit is (up to trivial 8 P , j_ — -
factors), an one-loop scalar — - - —.
integral times a tree-diagram. 7,



Application to amplitudes

1
N - =
/
. L - T
e Per tree-diagram, there is one _ - -
1-loop diagram with a soft p >t .
singularity. Z ; -
\
T — — -
e The soft limit is (up to trivial 8 P , j_ — -
factors), an one-loop scalar — - - —.
integral times a tree-diagram. 7,



Application to amplitudes

O _ -

€\ *?\ . F\ > i —-

N \-\,\’__'/
. -
(i~ 1) )_ IR U \

—

e Many graphs yield collinear

divergences. WARD - TOeNTITY

e Summing over all such graphs, o
cancellations take place ? ; S
(“Ward”-identity) oL —
R A \
* The net-result is factorization of | \ L - — 7
the amplitude in the collinear _— 5/ 7 ] /\( /\("/{
limit in terms of a splitting- MR . — -
\

functions and a tree-diagram.




Does the method work for complicated amplitudes?

N

"y,
e (p)) + e (py) = v(q) + ...7(q,)

Example case: QED amplitudes for muilti
photon production In electron positron annihilation
through two-loops

YES!

CA, Haindl, Sterman, Yang, Zeng



Simple subtractions! Valid locally! Factorized and universal!

CA, Haindl, Sterman, Yang, Zeng



amplitude
scaling

0
0
‘ k.l soft ‘ “ 111(52 \

1
ksoft, I || p1 | 2 1 |6

ksoft, Ulpe | 2 2 202 L8
kllpe Ulpe | 02 )L )20 1 0%
| kil O 210 218 |

lepl
k,[ — o0 -1
k — o0

Amplitude scaling in all singular limits
CA, Haindl, Sterman, Yang, Zeng



Numerical integration

e (Can such subtractions be used for Y
evaluating loop amplitudes — =
numerically?

e They are an important ingredient!
They remove “pinch” singularities.

integrand with large variance
e QOther singularities which can be : &

avolded with appropriate contour-
deformations are equally important.

J
=
=
w
=
©
o
“n
=
e
Q
-

-5
— param. jac

Rzal Qe‘:-rr:ru. jac. DOU b|e—bOX
- | — Realintegrand deformation

- Rezal total wat.

T
0




Numerical integration

e A breakthrough in numerical integration

has been achieved recently T E
e First integrate over the energy particle 1 Cauchy
component of all loop momenta using Ny
Cauch [Loop-Tree duality] o @
H ; ® ReE
e This reduces the number of integrations. e

Catani,Gleisberg,Krauss,Rodrigo, Winter; Bierenbaum, Catani, Draggiotis, Rodrigo;
Capatti,Hirschi, Kermanschah, Ruijl; Aguilera-Verdugo, Driencourt-Mangin,
Plenter, Ramirez-Uribe, Rodrigo, Sborlini,Torres Bobadilla, Tracz; Runkel, Sz6r,

Vesga, Weinzierl;...
3

Jd“k - J d_f‘ = Jd4k6(k2)®(k0)
| k|

Capatti, Hirschi, Kermanschah, Ruijl




Numerical integration

A breakthrough in numerical integration
has been achieved recently
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First integrate over the energy
component of all loop momenta using
Cauch [Loop-Tree duality]
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Then devise an algorithm to move the
contour of remaining integrations away
from non-pinched singularities.
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|Re(Amp5)|

1e0
le-1
le-2
le-3
le-4
le-5
le-6

Numerical integration at one-loop

Scan dd — vy Scan dd — vy

le-2

g le4
le-5
le-6

(a) Real part of the amplitude

A few per mille numerical precision easily reached

(b) Imaginary part of the amplitude.

1e0

le-1
le-2
le-3
le-4
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Numerical integration at many-loops

Topolo Kin. Ng¢ Ng Ng Lpax N, [10°] t/ [us] Phase Exp. Reference Numerical LTD A o A (%] A (%] -
p gy P H p
Re n/a 4.58688 +/- 0.05132 1.119
K1 20 20 15 [19,14] 3 100 -09 1.059
Im n/a 5.04144 +/- 0.05075 1.007
. Re n/a -1.04316 +/- 0.35247 33.79
2L6P.a K1 20 17 24 [12,13,13,13,13] 3 116 -09 10.99
Im n/a -4.42468 +/- 0.35421 8.005
_ Re n/a 1.17336 +/- 0.00888 0.757
K1 23 23 15 [22,19] 3 91 -09 0.303
' Im n/a 3.99809 +/- 0.00896 0.224
. Re n/a 5.35217 +/- 0.00153 0.029
2L6P.b K1* 23 20 20 [18,17,18] 3 103 -09 0.033
' Im n/a 3.81579 +/- 0.00150 0.039
_ Re n/a 4.90974 +/- 0.01407 0.286
K1 24 22 16 [20,21] 3 89 -09 0.375
' Im n/a -2.13974 +/- 0.01434 0.670
. , Re n/a 1.05934 +/- 0.15850 14.96
21.6P. c K1 24 20 22 [17,17,17,17] 3 108 -08 14.87
' Im n/a 1.03698 +/- 0.15312 14.77
. Re n/a 1.90487 +/- 0.05753 3.020
K1 24 20 26 [16,7,14, 14 4] 3 136 -08 2.017
' Im n/a -3.55267 +/- 0.05746 1.617
. , Re n/a -2.97419 +/- 0.00961 0.323
2L6P.d K1 24 17 30 [13,12,12 12 2] 3 144 -08 0.367
' Im n/a -2.18847 +/- 0.00957 0.437
Re n/a 2.87833 +/- 0.00951 0.330
K1 26 21 34 [16,9,9,14,15 9, 7] 3 163 -07 0.386
Im n/a 1.99937 +/- 0.00961 0.481
. Re n/a 1.67332 +/- 0.00578 0.346
JL6P.e K1 26 18 43 [13,12,7,7,12,12,12,12,7,5] 3 172 -07 0.482
Im n/a -0.21788 +/- 0.00571 2.620
Re n/a -0.95486 +/- 0.00890 0.932
K1 27 27 22 [24,21,24] 3 121 -08 0.368
Im n/a 3.28530 +/- 0.00889 0.271
. Re n/a 2.55104 +/- 0.00208 0.082
JL6P.f K1 27 24 34 [19,20,20,20,20] 3 152 -08 0.097
Im n/a -1.63019 +/- 0.00205 0.126
Re n/a -5.15438 +/- 0.03310 0.642
K1 39 46 40 [37,42,41,40] 3 237 -12 0.544
2L.8P Im n/a 6.78546 +/- 0.03243 0.478

Table 7: Results for two-loop topologies for scattering kinematics (2 — V) for massless and massive propagators (indicated by a *).
When there is no reference result, A|%] and A[%]|- | refer to the Monte-Carlo accuracy relative to the central value. See the main text
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Back to

UNITAR

iNntegrals -

'O match

1Y

-

D makes the dimensionalities of loop and phase-space

| Implementing local unitarity 1s natural in this framework.

* “N3LO" {gb?’, ¢4} cross-section from one individual 4-loop topology :

CUTKOSKY + LTD CUTS [ J=5¢(5)

reproduced numerically to
6 digits.

IR cancellations can be made to happen for any theory, at any loop count
and separately for each individual topology!
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Conclusions

We have withessed rapid progress in perturbative QCD, matching the
precision of the LHC experiments. So far!

Can we keep up? A need to keep reinventing our field and
understanding perturbation theory at deeper levels.

Infrared factorization and Unitarity have been crucial historically. These
properties can be exploited further.

A dream which can become true: Perform perturbative QCD

computations at very high orders efficiently, automatically and in D=4
exactly!

Bring theoretical predictions to the frontline of the precision physics at
the LHC (and gravitational waves and cosmology....)



