

PMU INSTITUTE FOR THE PHYSICS AND MATHEMATICS OF THE UNIVERSE THE UNIVERSITY OF TOKYO INSTITUTES FOR ADVANCED STUDY

Dark Colors

国際高等研究所

Hitoshi Murayama (Berkeley, Kavli IPMU) RECONNECT 2020 May 26, 2020

hierarchy problem

There must be new particles discoverable at the LHC!

Squarks

J=0?

The following data are averaged over all light flavors, presumably u, d, s, c with both chiralities. For flavor-tagged data, see listings for Stop and Sbottom. Most results assume minimal supergravity, an untested hypothesis with only five parameters. Alternative interpretation as extra dimensional particles is possible. See KK particle listing.

SQUARK MASS

		<u>VALUE (GeV)</u> 538±10	DOCUMENT ID OUR FIT	<u>TECN</u>	<u>COMMENT</u> mSUGRA assumptions
Ehe New Hork E	imes	532±11	¹ ABBIENDI 11D	CMS	Missing ET with mSUGRA assumptions
		541±14	² ADLER 110	ATLAS	Missing ET with mSUGRA assumptions
	July 23, 2011	• • • We do not use	e the following data for	averages, fits,	limits, etc • • •
	¬ .	652±105	³ ABBIENDI 11K	CMS	extended mSUGRA
The Other Half of the Universe I	Discovere	bd			with 5 more parameters

Geneva, Switzerland

¹ABBIENDI 11D assumes minimal supergravity in the fits to the data of jets and missing energies and set $A_0=0$ and $\tan\beta=3$. See Fig. 5 of the paper for other choices of A_0 and $\tan\beta$. The result is correlated with the gluino mass M_3 . See listing for gluino.

²ADLER 11O uses the same set of assumptions as ABBIENDI 11D, but with tan $\beta = 5$. ³ABBIENDI 11K extends minimal supergravity by allowing for different scalar massessquared for Hu, Hd, 5* and 10 scalars at the GUT scale.

MODE	<u>BR(%)</u>	DOCUMENT ID	TECN	COMMENT
j+miss	32±5	ABE 10U	ATLAS	
j I+miss	73±10	ABE 10U	ATLAS	lepton universality
j e+miss	22±8	ABE 10U	ATLAS	
j μ +miss	25±7	ABE 10U	ATLAS	
q χ^+	seen	ABE 10U	ATLAS	

SQUARK DECAY MODES

- at least five missing pieces in the SM:
 - dark matter
- Ovββ neutrino mass gravitational wave

- Simons Array CMB S4 LiteBIRD
- apparently acausal density fluctuations
- baryon asymmetry
- DUNE, HyperK, LHCb, Belle II, kaon, EDM

Can't do justice to many many ideas in the literature!

old sociology

- We (community) used to think
 - must solve naturalness problems in SM
 - hierarchy problem, strong CP, etc
 - it is great if a solution also gives dark matter candidate as an option
 - big ideas: supersymmetry, extra dim
 - probably because dark matter problem was not so well established in 80's

We want new particles for naturalness anyway Miracle²

new sociology

- WIMP should be explored at least down to the neutrino floor
 - heavier? e.g., wino @ $3 \text{TeV} \Longrightarrow \text{CTA}$
- dark matter definitely exists
 - it is great if a theory also solves some particle physics problems as an option
- perhaps not heavier but rather lighter and weaker coupling?

freeze-in: light gravitino

etc)

Why Dark Colors?

- QCD is beautiful. Nature may use it again.
- Self-interacting dark matter
 - large cross section and light dark matter.
 Dark QCD is perfect.
 - velocity dependence may need resonances. Dark QCD provides that.
- asymmetric dark matter
 - need to shed symmetric component.
 Easy for Dark QCD.
- Also hierarchy problem, baryon asymmetry

Q [GeV]

DDO 154 dwarf galaxy

can be explained if dark matter scatters against itself
 Need Self-Interacting Dark Matter σ/m ~ 1b / GeV
 (Spergel, Steinhardt astro-ph/9909386)
 if true, only astrophysical information beyond gravity

Diversity in stellar distribution

Similar outer circular velocity and stellar mass, but different stellar distribution

- compact → redistribute SIDM significantly

Ayuki Kamada

- extended \rightarrow unchange SIDM distribution

Baryonic Feedback?

James S. Bullock and Michael Boylan-Kolchin, arXiv:1707.04256

PFS pointings for MW satellites HSC imaging data are available for all samples ~

Standard Freeze-out doesn't work

- If self-interaction is in the S-wave, the unitarity limit says $\sigma_0 < 4\pi \hbar^2 / (mv)^2$
- For σ/m~cm²/g for v~I0⁻³, we need m<I4 GeV
- CMB limit on dark matter annihilation *m*>20GeV
- GC γ ray: m>300GeV?
- options
 - SIMP: $3 \rightarrow 2$
 - asymmetric
 - freeze-in
 - secluded

Abazajian, Horiuchi, Kaplinghat, Keeley, Macias, Ng, arXiv:2003.10416

Strongly Interacting Massive Particles (SIMP)

SIMPlest Miracle

- SU(2) with 4 doublets
- Not only the mass scale is similar to QCD
- dynamics itself can be QCD! Miracle³
- DM = pions

• e.g.
$$SU(4)/Sp(4) = S^5$$

 $\mathcal{L}_{chiral} = \frac{1}{16f_{\pi}^{2}} \operatorname{Tr} \partial^{\mu} U^{\dagger} \partial_{\mu} U$ Hochberg, Kuflik, HM, Volansky, Wacker Phys.Rev.Lett. II5 (2015) 021301 $\mathcal{L}_{WZW} = \frac{8N_{c}}{15\pi^{2}f_{\pi}^{5}} \epsilon_{abcde} \epsilon^{\mu\nu\rho\sigma} \pi^{a} \partial_{\mu} \pi^{b} \partial_{\nu} \pi^{c} \partial_{\rho} \pi^{d} \partial_{\sigma} \pi^{e} + O(\pi^{7})$ $\pi_{5}(G/H) \neq 0$

Eric Kuflik

LAGRANGIANS

Solid curves: solution to Boltzmann eq. Dashed curves: along that solution $\frac{m_{\pi}}{f_{\pi}} \propto m_{\pi}^{3/10}$ $\frac{\sigma_{\text{scatter}}}{m_{\pi}} \propto m_{\pi}^{-9/5}$

Solid curves: solution to Boltzmann eq. Dashed curves: along that solution

$$\frac{m_{\pi}}{f_{\pi}} \propto m_{\pi}^{3/10}$$
$$\frac{\sigma_{\text{scatter}}}{m_{\pi}} \propto m_{\pi}^{-9/5}$$

Solid curves: solution to Boltzmann eq. Dashed curves: along that solution $\frac{m_{\pi}}{f_{\pi}} \propto m_{\pi}^{3/10}$ $\frac{\sigma_{\text{scatter}}}{m_{\pi}} \propto m_{\pi}^{-9/5}$

Xiaoyong Chu, Camilo Garcia-Cely, HM, Phys.Rev.Lett. 122 (2019) no.7, 071103

Resonance is plausible

Robert McGehee, HM, Yu-Dai Tsai, to appear

It's P-wave!

- typically light dark matter with thermal freeze out is excluded by CMB
- Exception: *P*-wave annihilation

Ranjan Laha, Julian B. Muñoz, and Tracy R. Slatyer arXiv:2004.00627

Unified description of SIDM

communication

- 3 to 2 annihilation
- excess entropy must be transferred to e[±], γ
- need communication at some level
- leads to experimental signal

if totally decoupled

 3→2 annihilations without heat exchange is excluded by structure formation, [de Laix, Scherrer and Schaefer, Astrophys. J. 452, 495 (1995)]

vector portal

 $\frac{\epsilon_{\gamma}}{2c_W}B_{\mu\nu}F_D^{\mu\nu}$

Yonit Hochberg, Eric Kuflik, HM arXiv:1512.07917, arXiv: 1706.05008 also axion portal: Hochberg, Kuflik, McGehee, HM, Schutz, arXiv:1806.10139 Higgs portal: Choi, Hochberg, Kuflik, Lee, Mambrini, HM, Pierre, arXiv:1707.01434

vector portal

- e.g., the SIMPlest model SU(2) gauge group with N_f=2 (4 doublets)
- gauge U(1)=SO(2)
 ⊂ SO(2) ×SO(3)
 ⊂ SO(5)=Sp(4)
- maintains degeneracy of quarks
- near degeneracy of pions for co-annihilation

 $SU(4)/Sp(4) = S^5$

$$(q^+,q^+,q^-,q^-)$$

$$(\pi^{++},\pi^{--},\pi^0_x,\pi^0_y,\pi^0_z)$$

$$\frac{\epsilon_{\gamma}}{2c_W}B_{\mu\nu}F_D^{\mu\nu}$$

Super KEK B & Belle II

Dark Spectroscopy

Dark Spectroscopy

Twin Higgs

□ Take two mirror copies of the SM:

 $(SM_A) \times (SM_B)$ Z_2 Z_2 $Z_$

Assume Higgs potential has an SU(4) or SO(8) global symmetry in the UV.

$$\Box \quad Take \ a \ small \ hierarchy \ of \ Higgs \ vevs:$$

$$\langle H_A \rangle = v \qquad \langle H_B \rangle = f \qquad with \ v <$$

Chacko, Goh, RH (2005)

Roni Harnik, JHU workshop 2017 in Budapest

F.

Twin Higgs

Yonit Hochberg, Eric Kuflik, HM arXiv:1805.09345

Matters Genesis

Eleanor Hall, Thomas Konstandin, Robert McGehee, HM, Géraldine Servant, arXiv:1910.08068, 1911.12342

Electroweak Baryogenesis Cohen, Kaplan, Nelson

- First-order phase transition
- Different reflection probabilities for *t*_L, *t*_R
- asymmetry in top quark
- Left-handed top quark asymmetry partially converted to lepton asymmetry via anomaly
- Remaining top quark asymmetry becomes baryon asymmetry
- need varying CP phase inside the bubble wall (G. Servant)
- fixed KM phase doesn't help
- need CPV in Higgs sector
- but ACME limit on EDM

Eleanor Hall, Thomas Konstandin, Robert McGehee, HM + Géraldine Servant arXiv:1911.12342

e+e-

some history

- asymmetric dark matter (why $\Omega_b/\Omega_{DM} \approx O(1)$?)
 - S. Nussinov, PLB 165, 55 (1985) "technocosmology"
 - R. Kitano, HM, M. Ratz, arXiv:0807.4313, moduli decay
 - D.E. Kaplan, M. Luty, K. Zurek, arXiv:0901.4117
- darkogenesis (= "EW baryogenesis" in the dark sector)
 - J. Shelton, K. Zurek, arXiv:1008.1997

$\begin{array}{ll} \textbf{portal}\\ \textbf{L} = y' \bar{L}' H \nu_R + y_i \bar{L}_i H \nu_R \\ \epsilon_i = \frac{y_i}{\sqrt{(y')^2 + (y_i)^2}} & M_\nu = \sqrt{(y')^2 + (y_i)^2} v \end{array}$

- charged current universality: $\epsilon_i^2 < 10^{-3}$
- $\mu \rightarrow e \gamma \text{ constraint: } \epsilon_e \epsilon_{\mu} < 4 \times 10^{-5} (G_F M_V)^{-5}$
- $\tau \rightarrow \mu \gamma$ constraint: $\epsilon_e \epsilon_{\mu} < 0.03 (G_F M_v)$
- If $M_{\nu} < 70$ GeV, $\varepsilon_i^2 < 10^{-5}$ (DELPHI: $Z \rightarrow \nu \nu_R, \nu_R \rightarrow lff$)
- equilibration of asymmetries requires only $\epsilon_i > 10^{-16}$ or so

Dark Neutron Dark Matter

Dark Proton & Pion Dark Matter

New Methods for Dark Matter Discovery

- QCD is beautiful. Nature may use it again.
- dark matter, baryon asymmetry, hierarchy problem
- direct detection, beam dump, Mu2e, etc
- Dark spectroscopy
- resonant self-interaction in dwarf galaxies
- rare Z and Higgs decays
- gravitational wave

dark sector

ETTON

C

UNITED COLORS OF PHYSICS

-Houge

Thank you!