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The Lepton Flavour Problem
Consists of three basic elements (sub-problems), namely, understanding:

• Why mνj <<< me,µ,τ ,mq, q = u, c, t, d, s, b (mνj ∼< 0.5 eV, ml ≥ 0.511 MeV, mq ∼> 2 MeV);

• The origins of the patterns of neutrino mixing of 2 large and 1 small angles, and of

∆m2
ij, i.e., of ∆m2

21 ≪ |∆m2
31|, ∆m2

21/|∆m2
31|

∼= 1/30;

• The origin of the hierarchical pattern of charged lepton masses: me ≪ mµ ≪ mτ,

me/mµ
∼= 1/200, mµ/mτ

∼= 1/17.

Each of these three sub-problems is by itself a formidable problem. As a consequence,

solutions to each individual problem has been proposed, and I will illustrate these solu-

tions. However, a universal ”elegant and convincing” solution to all three problems is still

lacking. I will describe a novel approach to the flavour problem that seems promising.
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The renewed attemps to seek new better solutions of the flavour problem than those

already proposed were stimulated primarily by the a remarkable progress made in the

studies of neutrino oscillations, which beagn 22 years ago with the discovery of oscillations

of the atmospheric νµ and ν̄µ by SuperKamiokande experiment. This lead, in particular,

to the determination of the pattern of neutrino mixing, which turn out to consist of two

large and one small mixing angles angles.

Understanding the origin of the pattern of neutrino mixing and of neutrino mass squared

differences that emerged from the neutrino oscillation data in the recent years is by itself

a formidable problem. It is one of three ”constituents” of the lepton flavour problem

which in turn is a part of the more general fundamental problem in particle physics of

understanding the origins of flavour in both the quark and lepton sectors, i.e., of the

patterns of quark masses and mixing, and of the charged lepton and neutrino masses and

of neutrino mixing.

“Asked what single mystery, if he could choose, he would like to see solved in his lifetime,

Weinberg doesnt have to think for long: he wants to be able to explain the observed

pattern of quark and lepton masses.”

From Model Physicist, CERN Courier, 13 October 2017.
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Of fundamental importance are also:

• the determination of the status of lepton charge conservation and the nature - Dirac

or Majorana - of massive neutrinos (which is one of the most challenging and pressing

problems in present day elementary particle physics) (GERDA, CUORE, KamLAND-Zen,

EXO, LEGEND, nEXO,...);

• determining the status of CP symmetry in the lepton sector (T2K, NOνA; T2HK,

DUNE);

• determination of the type of spectrum neutrino masses possess, or the “neutrino mass

ordering” (T2K + NOνA; JUNO; PINGU, ORCA; T2HKK, DUNE);

• determination of the absolute neutrino mass scale, or min(mj) (KATRIN, new ideas;

cosmology).

The program of research extends beyond 2035.
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These are the ”big questions” especially relevant to the reference 3-neutrino mixing

scheme, which I am going to employ for the discussion of the lepton flavour problem.

• BS3νRM: eV scale sterile ν’s; NSI’s; ChLFV processes (µ → e + γ, µ → 3e, µ− − e−

conversion on (A,Z)); ν−related BSM physics at the TeV scale (NjR, H
−−, H−, etc.).
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Reference Model: 3-ν mixing

νlL =
3
∑

j=1
Ulj νjL l = e, µ, τ.

The PMNS matrix U - 3× 3 unitary.

νj, mj 6= 0: Dirac or Majorana particles.

Data: 3 νs are light: ν1,2,3, m1,2,3 ∼< 0.5 eV.

3-ν mixing: 3-flavour neutrino oscillations possible.

νµ, E; at distance L: P (νµ → ντ(e)) 6= 0, P (νµ → νµ) < 1

P (νl → νl′) = P (νl → νl′;E,L;U ;m2
2 −m2

1,m
2
3 −m2

1)
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Three Neutrino Mixing

νlL =

3
∑

j=1

Ulj νjL .

U is the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) neutrino mixing matrix,

U =





Ue1 Ue2 Ue3
Uµ1 Uµ2 Uµ3
Uτ1 Uτ2 Uτ3





• U - n× n unitary:

n 2 3 4

mixing angles: 1
2
n(n− 1) 1 3 6

CP-violating phases:

• νj− Dirac: 1
2
(n− 1)(n− 2) 0 1 3

• νj− Majorana: 1
2
n(n− 1) 1 3 6

n = 3: 1 Dirac and

2 additional CP-violating phases, Majorana phases

S.M. Bilenky, J. Hosek, S.T.P., 1980
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PMNS Matrix: Standard Parametrization

U = V P , P =





1 0 0

0 ei
α21

2 0

0 0 ei
α31

2



 ,

V =





c12c13 s12c13 s13e−iδ

−s12c23 − c12s23s13eiδ c12c23 − s12s23s13eiδ s23c13
s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13





• sij ≡ sin θij, cij ≡ cos θij, θij = [0, π
2
],

• δ - Dirac CPV phase, δ = [0,2π]; CP inv.: δ = 0, π,2π;

• α21, α31 - Majorana CPV phases; CP inv.: α21(31) = k(k′)π, k(k′) = 0,1,2...

S.M. Bilenky et al., 1980

• ∆m2
⊙ ≡ ∆m2

21
∼= 7.34× 10−5 eV2 > 0, sin2 θ12

∼= 0.305, cos 2θ12 ∼> 0.306 (3σ),

• |∆m2
31(32)

| ∼= 2.448 (2.502)× 10−3 eV2, sin2 θ23
∼= 0.545 (0.551), NO (IO) ,

• θ13 - the CHOOZ angle: sin2 θ13 = 0.0222 (0.0223)

F. Capozzi et al. (Bari Group), arXiv:2003.08511.
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• sgn(∆m2
atm) = sgn(∆m2

31(32)
) not determined

∆m2
atm ≡ ∆m2

31 > 0, normal mass ordering (NO)

∆m2
atm ≡ ∆m2

32 < 0, inverted mass ordering (IO)

Convention: m1 < m2 < m3 - NO, m3 < m1 < m2 - IO

m1 ≪ m2 < m3, NH,

m3 ≪ m1 < m2, IH,

m1
∼= m2

∼= m3, m
2
1,2,3 >> |∆m2

31(32)|, QD; mj ∼> 0.10 eV.

•m2 =
√

m2
1 +∆m2

21, m3 =
√

m2
1 +∆m2

31 - NO;

•m1 =
√

m2
3 +∆m2

23 −∆m2
21, m2 =

√

m2
3 +∆m2

23 - IO;
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m2

0

solar~7×10−5eV2

atmospheric
~2×10−3eV2

atmospheric
~2×10−3eV2

m1
2

m2
2

m3
2

m2

0

m2
2

m1
2

m3
2

νe

νµ
ντ

? ?

solar~7×10−5eV2

S.F. King and C. Luhn, arXiv:1301.1340
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S�`�K2i2` P`/2`BM; "2bi }i 1σ `�M;2 2σ `�M;2 3σ `�M;2 ó1σô UWV

δm2/10−5 eV
2 LP dXj9 dXky � dX8R dXy8 � dXeN eXNk � dXNy kXk

AP dXj9 dXky � dX8R dXy8 � dXeN eXNk � dXNR kXk

sin
2 θ12/10

−1 LP jXy8 kXNk � jXRN kXd3 � jXjk kXe8 � jX9d 9X8
AP jXyj kXNy � jXRd kXdd � jXjR kXe9 � jX98 9X8

|∆m2|/10−3 eV
2 LP kX938 kX98j � kX8R9 kX9RN � kX89d kXj3N � kX8d3 RXj

AP kX9e8 kX9j9 � kX9N8 kX9y9 � kX8ke kXjd9 � kX88e RXk

sin
2 θ13/10

−2 LP kXkk kXR9 � kXk3 kXyd � kXj9 kXyR � kX9R jXy
AP kXkj kXRd � kXjy kXRy � kXjd kXyj � kX9j jXy

sin
2 θ23/10

−1 LP 8X98 9XN3 � 8Xe8 9X89 � 8X3R 9Xje � 8XN8 9XN
AP 8X8R 8XRd � 8Xed 9Xey � 8X3k 9XjN � 8XNe 9Xd

δ/π LP RXk3 RXRy � RXee yXN8 � RXNy y � yXyd ⊕ yX3R � k Re
AP RX8k RXjd � RXe8 RXkj � RXd3 RXyN � RXNy N

δm2 ≡ ∆m2
21; ∆m2 ≡ ∆m2

31(32)
−

(+)
0.5∆m2

21, NO (IO).

F. Capozzi et al. (Bari Group), arXiv:2003.08511.
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• Dirac phase δ: νl ↔ νl′, ν̄l ↔ ν̄l′, l 6= l′; A
(l,l′)
CP ∝ JCP ∝ sin θ13 sin δ:

P.I. Krastev, S.T.P., 1988

JCP = Im
{

Ue1Uµ2U
∗
e2U

∗
µ1

}

=
1

8
sin 2θ12 sin 2θ23 sin 2θ13 cos θ13 sin δ

Current data: |JCP | ∼< 0.035 (can be relatively large!); b.f.v. with δ = 3π/2:

JCP
∼= −0.035.

• Majorana phases α21, α31:

– νl ↔ νl′, ν̄l ↔ ν̄l′ not sensitive;

S.M. Bilenky et al., 1980;

P. Langacker et al., 1987

– |<m>| in (ββ)0ν−decay depends on α21, α31;

– Γ(µ→ e+ γ) etc. in SUSY theories depend on α21,31;

– BAU, leptogenesis scenario: δ, α21,31 !
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δ ∼= 3π/2?

JCP = Im
{

Ue1Uµ2U
∗
e2U

∗
µ1

}

=
1

8
sin 2θ12 sin 2θ23 sin 2θ13 cos θ13 sin δ
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Latest global analysis: results for NO (IO) spectrum

• Best fit value: δ = 1.28 (1.52)π;

• δ = 0 or 2π are disfavored at 2.6 (> 5)σ;
• δ = π is allowed (disfavored) at 1.6 (3.2)σ

• δ = π/2 is strongly disfavored at 4.2 (> 5)σ

• At 3σ: δ/π is found to lie in the intervals
0.00− 0.07⊕ 0.81− 2.00 (1.09-1.90).

• Data favors NO: IO disfavored at 3.2σ.

F. Capozzi et al. (Bari Group), arXiv:2003.08511.
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Preceding Analyses

• Best fit value: δ = 1.32 (1.52)π [1.30 (1.54)π];

• δ = 0 or 2π are disfavored at 3.0 (3.6)σ [2.6 (3.0)σ];
• δ = π is disfavored at 1.8 (3.6)σ [1.7 (3.3)σ];

• δ = π/2 is strongly disfavored at 4.4 (5.2)σ
[4.3 (5.0)σ].

• At 3σ: δ/π is found to lie in 0.83-1.99 (1.07-1.92)
[1.07-1.97 (0.80-2.08)].

F. Capozzi, E. Lisi et al., arXiv:1804.09678 [E. Esteban et al., NuFit 3.2 (Jan., 2018)]

• Data favors NO: IO disfavored at 3.1σ.

F. Capozzi et al., 1804.09678.
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F. Capozzi et al. (Bari Group), arXiv:2003.08511.
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Latest results from T2K

K. Abe et al., 1910.03887

Best fit value: δ = −1.89 (−1.38), NO (IO).
δ = 0(π) disfavored at 3σ (2σ)
At 3σ: δ is found to lie in [-3.41,-0.03] ([-2.54,-0.32]), NO (IO).
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Quark Masses and Mixing

The observed patterns of the masses of up- and down-type quarks and

of the charged leptons of the three families of SM are characterised by

strong hierarchies:

md ≪ ms ≪ mb ,
md

ms
= 5.02× 10−2 ,

ms

mb

= 2.22× 10−2 , mb = 4.18 GeV;

mu ≪ mc ≪ mt ,
mu

mc
= 1.7× 10−3 ,

mc

mt
= 7.3× 10−3 , mt = 172.9 GeV;

me ≪ mµ ≪ mτ ,
me

mµ
= 4.8× 10−3 ,

mµ

mτ
= 5.95× 10−2 , mτ = 1776.86 MeV.

The three quark mixing angles are small and hierarchical,

θq12 = 12.96◦ , θq23 = 2.42◦ , θq13 = 0.022◦,

while the lepton mixing is characterised by two large and one small angles,

θl12 = 33.65◦ , θl23 = 47.1◦ , θl13 = 8.49◦ .

The quoted values correspond to the standard” parametrisations of VCKM

and UPMNS. The Dirac CPV phases in CKM and PMNS matrices read:

δq = (73.5− 5.1+ 4.2)◦ , δl = (1.37− 0.16+ 0.18)× 180◦ .

F. Capozzi et al. (Bari Group), arXiv:1804.09678.
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The Flavour Problem: Modular Invariance Approach

In this approach the flavour (modular) and CP symmetries are broken by

the vacuum expectation value (vev) of a single scalar (flavon) field - the

modulus τ .

Many of the drawbacks of the widely studied alternative approaches are

absent in the modular invariance approach to the flavour problem.
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Modular invariance has been investigated in the context of field and su-

perstring theories, being a feature of a number of theoretical physics con-

structions (theories with extra dimensions compactified on a torus (or

tori), superstring theories on tori or orbifolds, supergravity theories) [2]-

[7]; it can be present in theories with global or local super-symmetry and

appears to be a property of the quantum Hall effect [8]-[13]. The modular

forms which are an integral part of the approach (see below) have been

extensively studied by mathematicians, in particular, in connection with

number theory [14].

[2] R. Blumenhagen, B. Kors, D. Lust and S. Stieberger, Phys. Rept. 445, 1

(2007). [3] L. E. Ibanez, Phys. Lett. B181, 269 (1986). [4] S. Hamidi and C.

Vafa, Nucl. Phys. B279, 465 (1987). [5] S. Ferrara, D. Lust and S. Theisen,

Phys. Lett. B233, 147 (1989). [6] D. Cremades, L. E. Ibanez and F. Marchesano,

JHEP 0405, 079 (2004). [7] S. Ferrara, D. Lust, A. D. Shapere and S. Theisen,

Phys. Lett. B225, 363 (1989). [8] C. A. Ltken and G. G. Ross, Phys. Rev. D45,

11837 (1992). [9] A. Cappelli and G. R. Zemba, Nucl. Phys. B490, 595 (1997).

[10] C. P. Burgess and B. P. Dolan, Phys. Rev. B63, 155309 (2001). [11] M.

Lippert, R. Meyer and A. Taliotis, JHEP 1501, 023 (2015). [12] C.A. Lutken,

EPJ Web Conf. 71, 0079 (2014) 00079 (doi:10.1051/epjconf/20147100079).

[13] C. A. Lutken, Phys. Rev. B99, 195152 (2019). [14] H. M. Farkas and

I. Kra, Theta Constants, Riemann Surfaces and the Modular Group, Graduate

Studies in Mathematics, vol. 37, American Mathematical Society (2001).
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The Modular Group and the Finite Modular Groups

The modular group Γ – group of linear fractional transformations γ acting

on the complex variable τ belonging to the upper-half complex plane:

γτ = aτ+b
cτ+d , γ =





a b
c d



 , a, b, c, d ∈ Z , ad− bc = 1 , Imτ > 0 .

Γ is generated by two transformations S and T satisfying

S2 = (ST )3 = I ,

I being the identity element, and acting on τ as

τ
S
−→ −1

τ , τ
T
−→ τ +1 .

S and T can be represented as

S =





0 1
−1 0



 , T =





1 1
0 1



 .

Complex variable τ - modulus (the vev of τ(x)).

Γ – inhomogeneous modular group.
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The Fundamental Domain of Γ shown for Imτ ≤ 2 (the red dots correspond

to solutions of the lepton flavour problem, see further).

P.P. Novichkov, J.T. Penedo, STP, A.V. Titov, arXiv:1811.04933.
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Γ is isomorphic to the projective special linear group PSL(2, Z) = SL(2, Z)/Z2,

SL(2, Z) is the special linear group of 2× 2 matrices with integer elements

and unit determinant, and Z2 = {I,−I} is its centre.

SL(2, Z) = Γ(1) ≡ Γ contains a series of infinite normal subgroups Γ(N),

Γ(N) =

{(

a b
c d

)

∈ SL(2, Z) ,

(

a b
c d

)

=

(

1 0
0 1

)

(mod N)

}

, N = 1,2,3, . . . ,

called the principal congruence subgroups. For N = 1 and 2, we define the

groups Γ(N) ≡ Γ(N)/{I,−I} with Γ(1) ≡ Γ. For N > 2, Γ(N) ≡ Γ(N) since

Γ(N) does not contain the subgroup {I,−I}.

The quotient groups ΓN ≡ Γ/Γ(N) are called finite modular groups. Remarkably,

for N ≤ 5, ΓN are isomorphic to non-Abelian discrete groups widely used

in flavour model building:

Γ2 ≃ S3, Γ3 ≃ A4, Γ4 ≃ S4 and Γ5 ≃ A5.

ΓN is presented by two generators S and T satisfying:

S2 = (ST )3 = TN = I .

The group theory of Γ2 ≃ S3, Γ3 ≃ A4, Γ4 ≃ S4 and Γ5 ≃ A5 is summarised,

e.g., in P.P. Novichkov et al., JHEP 07 (2019) 165, arXiv:1905.11970.
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Group Number of elements Generators Irreducible representations

S4 24 S, T (U) 1, 1′, 2, 3, 3′

A4 12 S, T 1, 1′, 1′′, 3

T ′ 24 S, T (R) 1, 1′, 1′′, 2, 2′, 2′′, 3

A5 60 S̃, T̃ 1, 3, 3′, 4, 5

Number of elements, generators and irreducible representations of S4, A4,

T ′ and A5 discrete groups.
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Examples of symmetries: A4, S4, A5.
From M. Tanimoto et al., arXiv:1003.3552
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Matter Fields and Modular Forms

The matter(super)fields (charged lepton, neutrino, quark) transform under

Γ as ”weighted” multiplets:

ψi = (cτ + d)−kψ ρij(γ)ψj , γ ∈ Γ .

kψ is the weight and ρ(γ) is a unitary representation of Γ; kψ can be positive

integer, or negative integer, or 0: k ∈ Z.

ρ(γ) is the identity matrix whenever γ ∈ Γ(N).

Thus, effectively, ρ(γ) is a unitary representation of the finite modular

group ΓN.

F. Feruglio, arXiv:1706.08749; S. Ferrara et al., Phys.Lett. B233 (1989) 147, B225 (1989) 363
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Modular Forms

The key elements of the considered framework are modular forms f(τ) of

weight kf and level N – holomorphic functions of τ , which transform under

Γ as follows:

f (γτ) = (cτ + d)kf f(τ) , γ ∈ Γ ,

In the case under discussion non-trivial modular forms exist only for positive

even integer weight kf.

For given k, N (N is a natural number), the modular forms span a linear

space of finite dimension:

of weight k and level 3, Mk(Γ3 ≃ A4), is k+1;

of weight k and level 4, Mk(Γ4 ≃ S4), is 2k+1;

of weight k and level 5, Mk(Γ5 ≃ A5), is 5k+1.

Thus, dimM2(Γ3 ≃ A4) = 3, dimM2(Γ4 ≃ S4) = 5, dimM2(Γ5 ≃ A5) = 11.

One can find a basis F (τ) ≡ (f1(τ), f2(τ), . . . )T in each of these spaces

such that for any γ ∈ Γ, F (γτ) belongs to the same space and transforms

according to a unitary irreducible representation r of ΓN:

F (γτ) = (cτ + d)kF ρr(γ)F(τ) , γ ∈ Γ .

This result is at the basis of the modular invariance approach to the

flavour problem proposed in F. Feruglio, arXiv:1706.08749.
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The Framework

N = 1 rigid (global) SUSY, the matter action S reads:

S =
∫

d4xd2θ d2θ K(τ, τ , ψ, ψ) +
(∫

d4xd2θ W (τ, ψ) + h.c.
)

,

K is the Kähler potential, W is the superpotential, ψ denotes a set of

chiral supermultiplets ψi, θ and θ are Grassmann variables;

τ is the modulus chiral superfield, whose lowest component is the complex

scalar field acquiring a VEV (we use in what follows the same notation τ

for the lowest complex scalar component of the modulus superfield and

call this component also “modulus”).

τ and ψi transform under the action of Γ in a certain way (S. Ferrara et

al., PL B225 (1989) 363 and B233 (1989) 147). Assuming that ψi = ψi(x)

transform in a certain irrep ri of ΓN, the transformations read:

γ =





a b
c d



 ∈ Γ :



















τ →
aτ + b

cτ + d
,

ψi → (cτ + d)−ki ρri(γ)ψi .

ψi is not a multiplet of modular forms, (−ki) can be odd and/or negative.

Invariance of S under these transformations implies (global SUSY):
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W(τ, ψ) →W(τ, ψ) ,

The superpotential can be expanded in powers of ψi:

W(τ, ψ) =
∑

n

∑

{i1,...,in}

∑

s

gi1 ... in,s (Yi1 ... in,s(τ)ψi1 . . . ψin)1,s ,

1 stands for an invariant singlet of ΓN. For each set of n fields {ψi1, . . . , ψin},
the index s labels the independent singlets. Each of these is accompa-

nied by a coupling constant gi1 ... in,s and is obtained using a modular multi-

plet Yi1 ... in,s of the requisite weight. To ensure invariance of W under ΓN,

Yi1 ... in,s(τ) must transform as:

Y (τ)
γ
−→ (cτ + d)kYρrY (γ)Y (τ) ,

rY is a representation of ΓN, and kY and rY are such that

kY = ki1 + · · ·+ kin , (1)

rY ⊗ ri1 ⊗ . . .⊗ rin ⊃ 1 . (2)

Thus, Yi1 ... in,s(τ) represents a multiplet of weight kY and level N modular

forms transforming in the representation rY of ΓN.
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It is of crucial importance for model building to find the basis of modular

forms of the lowest weight 2 transforming in irreps of ΓN.

Multiplets of ΓN of higher weight modular forms can be constructed from

tensor products of the lowest weight 2 multiplets (they represent homo-

geneous polynomials of the weight 2 modular forms).

For (Γ3 ≃ A4), the generating (basis) modular forms of weight 2 were shown

to form a 3 of A4 (expressed in terms of the Dedekind eta function).

F. Feruglio, arXiv:1706.08749

For (Γ4 ≃ S4), the 5 basis modular forms of weight 2 were shown to form

a 2 and a 3
′ of S4 (expressed in terms of the Dedekind eta function).

J. Penedo, STP, arXiv:1806.11040

For (Γ5 ≃ A5), the 11 basis modular forms of weight 2 were shown to form

a 3, a 3
′ and a 5 of A5 (expressed in terms of the Jacobi theta function).

P.P. Novichkov, J. Penedo, STP, A.V. Titov, arXiv:1812.02158

For (Γ2 ≃ S3), the 2 basis modular forms of weight 2 were shown to form

a 2 of S3 (expressed in terms of the Dedekind eta function).

T. Kobayashi, K. Tanaka, T.H. Tatsuishi, arXiv:1803.10391
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Multiplets of higher weight modular forms have been also constructed from

tensor products of the lowest weight 2 multiplets:

i) for N = 4 (i.e., S4), multiplets of weight 4 (weight k ≤ 10) were derived

in arXiv:1806.11040 (arXiv:1811.04933);

ii) for N = 3 (i.e., A4) multiplets of weight k ≤ 6 were found in

arXiv:1706.08749;

iii) for N = 5 (i.e., A5), multiplets of weight k ≤ 10 were derived in

arXiv:1812.02158.

The modular forms of level N = 2,3,4 for Γ2,3,4 ≃ S3, A4, S4 have been

constructed by use of the Dedekind eta function, η(τ),

η(τ) = q1/24
∞
∏

n=1
(1− qn) , q = ei2πτ .

For A4, η(3τ), η(τ/3), η((τ +1)/3) and η((τ +2)/3) were used.

F. Feruglio, arXiv:1706.08749

For S4, η(τ + 1/2), η(4τ), η(τ/4), η((τ + 1)/4), η((τ + 2)/4) and η((τ + 3)/4)

were used.

J.T. Penedo, STP, arXiv:1806.11040
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From A. Titov, talk at FLASY 2019
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For, e.g., S4 the five independent modular forms of the weight 2 are

decomposed into the 2 and 3′ irreducible representations of S4:

Y (2)
2

(τ) =

(

Y1(τ)
Y2(τ)

)

, Y (2)
3′ (τ) =





Y3(τ)
Y4(τ)
Y5((τ)



 .

J.T. Penedo, STP, arXiv:1806.11040

Yi(τ) are expressed in terms of

η′(τ +1/2)/η(τ +1/2), η′(4τ)/η(4τ), η′(τ/4)/η(τ/4), η′((τ +1)/4)/η((τ +1)/4),

η′((τ +2)/4)/η((τ +2)/4), η′((τ +3)/4)/η((τ + 3)/4).
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The modular forms of higher weight transform according to certain irreps

of S4. The dimension of the linear space of mod. forms of weight k is

dimMk(Γ(4)) = 2k+1. At weight 4 there are 9 independent modular forms

transforming in the 1, 2, 3 and 3
′ irreps of S4:

Y
(4)
1

= Y1Y2 , Y
(4)
2

=





Y 2
2
Y 2
1



 ,

Y
(4)
3

=









Y1Y4 − Y2Y5
Y1Y5 − Y2Y3
Y1Y3 − Y2Y4









, Y
(4)
3′

=









Y1Y4 + Y2Y5
Y1Y5 + Y2Y3
Y1Y3 + Y2Y4









.

J.T. Penedo, STP, arXiv:1806.11040
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For the case of N = 4 (i.e., S4) we are going to consider further the weight

2 and the higher weight k ≤ 10 modular multiplets have been computed

in the basis of S and T generators employed in arXiv:1806.11040. In this

basis the triplet irreps of S and T to be used in our analysis read:

S = ±
1

3











−1 2ω2 2ω

2ω 2 −ω2

2ω2 −ω 2











, T = ±
1

3











−1 2ω 2ω2

2ω 2ω2 −1

2ω2 −1 2ω











,

ω = ei2πτ/3. The plus (minus) corresponds to the irrep 3 (3′) of S4.

In the employed basis we have:

ST =









1 0 0

0 ω2 0
0 0 ω









.
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In certain cases of N = 3,4,5 (i.e., A4, S4, A5) it proves convenient to work

in basis in which the generators S and T of these groups are represented

by symmetric matrices,

ρr(S) = ρTr (S) , ρr(T ) = ρTr (T ) ,

for all irreducible representations r.

The modular forms of levels N = 3,4,5 and weights k ≤ 10 in the symmetric

bases for S and T can be found in P.P. Novichkov et al., arXiv:1905.11970.

We will be interested in the finite modular group Γ4 ≃ S4.
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Lepton Flavour Models Based on S4
(Seesaw Models without Flavons)
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We assume that neutrino masses originate from the (supersymmetric) type

I seesaw mechanism. The superpotential in the lepton sector reads

W = α (EcLHdfE (Y ))
1
+ g (N cLHufN (Y ))

1
+Λ(N cN cfM (Y ))

1
,

a sum over all independent invariant singlets with the coefficients α =

(α, α′, . . . ), g = (g, g′, . . . ) and Λ = (Λ,Λ′, . . . ) is implied. fE,N,M(Y ) denote the

modular form multiplets required to ensure modular invariance.

For simplicity, we make the following assumptions:

• Higgs doublets Hu and Hd transform trivially under Γ4, ρu = ρd ∼ 1, and

ku = kd = 0;

• lepton SU(2) doublets L1, L2, L3 furnish a 3-dim. irrep of Γ4, i.e., ρL ∼ 3

or 3′;

• neutral lepton gauge singlets N c
1, N

c
2, N

c
3 transform as a triplet of Γ4,

ρN ∼ 3 or 3′;

• charged lepton SU(2) singlets Ec
1, E

c
2, E

c
3 transform as singlets of Γ4,

ρ1,2,3 ∼ 1, 1′.

With these assumptions, we can rewrite the superpotential as

W =

3
∑

i=1

αi (E
c
i LfEi (Y ))

1
Hd + g (N cLfN (Y ))

1
Hu +Λ(N cN c fM (Y ))

1
,
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Assigning weights (−ki), (−kL), (−kN) to Ec
i , L, N

c, and weights kαi, kg, kΛ
to the multiplets of modular forms fEi

(Y ), fN(Y ), fM(Y ), modular invariance

of the superpotential requires










kαi
= ki + kL

kg = kN + kL
kΛ = 2 kN

⇔











ki = kαi
− kg + kΛ/2

kL = kg − kΛ/2

kN = kΛ/2

.

By specifying the weights of the modular forms one obtains the weights

of the matter superfields.

After modular symmetry breaking, the matrices of charged lepton and

neutrino Yukawa couplings, λ and Y, as well as the Majorana mass matrix

M for heavy neutrinos, are generated:

W = λij E
c
i LjHd + YijN

c
i LjHu +

1

2
MijN

c
i N

c
j ,

a sum over i, j = 1,2,3 is assumed. After integrating out N c and after

EWS breaking, the charged lepton mass matrix Me and the light neutrino

Majorana mass matrix Mν are generated (we work in the L-R convention

for the charged lepton mass term and the R-L convention for the light

and heavy neutrino Majorana mass terms):

Me = vd λ
† , vd ≡ H0

d ,

Mν = −v2u Y
TM−1Y , vu ≡ H0

u .
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The Majorana mass term for heavy neutrinos

Assume kΛ = 0, i.e., no non-trivial modular forms are present in

Λ(N cN c fM (Y ))
1
, kN = 0, and for both ρN ∼ 3 or ρN ∼ 3

′

(N cN c)
1
= N c

1N
c
1 +N c

2N
c
3 +N c

3N
c
2 ,

leading to the following mass matrix for heavy neutrinos:

M = 2Λ





1 0 0
0 0 1
0 1 0



 , for kΛ = 0 .

The spectrum of heavy neutrino masses is degenerate; the only free

parameter is the overall scale Λ, which can be rendered real. The Majorana

mass term conserves a “non-standard” lepton charge and two of the three

heavy Majorana neutrinos with definite mass form a Dirac pair.

C.N. Leung, STP, 1983
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The neutrino Yukawa couplings

The lowest non-trivial weight, kg = 2, leads to

g (N cLY2)1Hu + g′ (N cLY3′)
1
Hu .

There are 4 possible assignments of ρN and ρL we consider. Two of

them, namely ρN = ρL ∼ 3 and ρN = ρL ∼ 3
′ give the following form of Y:

Y = g









0 Y1 Y2
Y1 Y2 0
Y2 0 Y1



+
g′

g





0 Y5 −Y4
−Y5 0 Y3
Y4 −Y3 0







 , for kg = 2 and ρN = ρL .

The two remaining combinations, (ρN , ρL) ∼ (3,3′) and (3′, 3), lead to:

Y = g









0 −Y1 Y2
−Y1 Y2 0
Y2 0 −Y1



+
g′

g





2Y3 −Y5 −Y4
−Y5 2Y4 −Y3
−Y4 −Y3 2Y5







 , for kg = 2 and ρN 6= ρL .

In both cases, up to an overall factor, the matrix Y depends on one

complex parameter g′/g and the VEV τ .

S.T. Petcov, RECONNECT, 26/05/2020



The charged lepton Yukawa couplings

Since we consider ρi ∼ 1 or 1′ and ρL ∼ 3 or 3′, we have four possible

combinations ρi ⊗ ρL. None of them contain the invariant singlet. Thus,

the weights kαi
cannot be zero, i.e., they are strictly positive, kαi

> 0.

Moreover, fEi (Y ) should transform in 3 if (ρi, ρL) ∼ (1, 3) or (1′, 3′), and in 3′

if (ρi, ρL) ∼ (1, 3′) or (1′, 3). Thus, for each i = 1,2,3, we have

αi (E
c
i LfEi (Y ))

1
Hd = Ec

i

∑

a

αi,a

[

L1

(

Y
(kαi)
a

)

1
+ L2

(

Y
(kαi)
a

)

3
+ L3

(

Y
(kαi)
a

)

2

]

Hd ,

where Y
(kαi)
a are independent triplets (3 or 3

′ depending on ρi and ρL) of

weight kαi. kαi = 2, i = 1,2,3 or i = 1,2 is not phenomenologically viable

(leads to two or one zero mass charged leptons). The minimal (in terms

of weights) viable possibility is defined by kαi = 2 and kαj = kαp = 4, for

j 6= p, with ρj 6= ρp. Possible since there are two triplets of weight 4, Y (4)
3

and Y (4)
3′ .

Then the relevant part of W , We, can take 6 different forms which lead

to the same matrix Ue diagonalising MeM
†
e = v2d λ

†λ, and thus do not lead

to new results for the PMNS matrix. We give just one of these 6 forms

corresponding to ρL = 3, ρ1 = 1
′, ρ2 = 1, ρ3 = 1

′:

α (Ec
1LY3′)

1
Hd + β

(

Ec
2LY

(4)
3

)

1

Hd + γ
(

Ec
3LY

(4)
3′

)

1

Hd .

S.T. Petcov, RECONNECT, 26/05/2020



This leads leads to

λ =





αY3 αY5 αY4
β (Y1Y4 − Y2Y5) β (Y1Y3 − Y2Y4) β (Y1Y5 − Y2Y3)
γ (Y1Y4 + Y2Y5) γ (Y1Y3 + Y2Y4) γ (Y1Y5 + Y2Y3)



 ,

In this “minimal” example the matrix λ depends on 3 free parameters, α,

β and γ, which can be rendered real by re-phasing of the charged lepton

fields, and the complex τ .

We recall that

Me = vd λ
† , vd ≡ H0

d ,

Mν = −v2u Y
TM−1Y , vu ≡ H0

u .
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Parameters of the model: α, β, γ, g2/Λ – real; g′ and VEV of τ – complex,

i.e., 6 real parametsers + 2 phases for description of 12 observables (3

charged lepton masses, 3 neutrino masses, 3 mixing angles and 3 CPV

phases). Excellent description of the data is obtained also for real g′ (i.e.,

6 real parameters + 1 phase).

The 3 real parameters vdα, β/α, γ/α – fixed by fitting me, mµ and mτ .

The remaining 3 real parameters and 2 (1) phases – v2ug
2/Λ, |g′/g|, |τ | and

arg(g′/g), arg τ (arg τ) – describe the 9 ν observables, 3 ν masses, 3 mixing

angles and 3 CPV phases.

The model considered leads to testable predictions for min(mj) (
∑

imi),

type of the ν mass spectrum (NO or IO), the CPV Dirac and Majorana

phases, |〈m〉|, θ23, as well as of correlations between different observables.
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Numerical Analysis

Each model depends on a set of dimensionless parameters

pi = (τ, β/α, γ/α, g′/g, . . . , Λ′/Λ, . . .) ,

which determine dimensionless observables (mass ratios, mixing angles and

phases), and two overall mass scales: vd α for Me and v2u g
2/Λ for Mν. Phe-

nomenologically viable models are those that lead to values of observables

which are in close agreement with the experimental results summarised in

the Table below. We assume also to be in a regime in which the running

of neutrino parameters is negligible.
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Observable Best fit value and 1σ range

me/mµ 0.0048± 0.0002

mµ/mτ 0.0565± 0.0045

NO IO

δm2/(10−5 eV2) 7.34+0.17
−0.14

|∆m2|/(10−3 eV2) 2.455+0.035
−0.032 2.441+0.033

−0.035

r ≡ δm2/|∆m2| 0.0299± 0.0008 0.0301± 0.0008

sin2 θ12 0.304+0.014
−0.013 0.303+0.014

−0.013

sin2 θ13 0.0214+0.0009
−0.0007 0.0218+0.0008

−0.0007

sin2 θ23 0.551+0.019
−0.070 0.557+0.017

−0.024

δ/π 1.32+0.23
−0.18 1.52+0.14

−0.15

Best fit values and 1σ ranges for neutrino oscillation parameters, obtained in the global

analysis of F. Capozzi et al., arXiv:1804.09678, and for charged-lepton mass ratios,

given at the scale 2 × 1016 GeV with the tanβ averaging described in F. Feruglio,

arXiv:1706.08749 obtained from G.G. Ross and M. Serna, arXiv:0704.1248. The pa-

rameters entering the definition of r are δm2 ≡ m2
2 −m2

1 and ∆m2 ≡ m2
3 − (m2

1 +m2
2)/2. The

best fit value and 1σ range of δ did not drive the numerical searches here reported.
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P.P. Novichkov, J.T. Penedo, STP, A.V. Titov, arXiv:1811.04933
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Best fit value 2σ range 3σ range

Re τ ±0.1045 ±(0.09597− 0.1101) ±(0.09378− 0.1128)
Im τ 1.01 1.006− 1.018 1.004− 1.018
β/α 9.465 8.247− 11.14 7.693− 12.39
γ/α 0.002205 0.002032− 0.002382 0.001941− 0.002472

Re g′/g 0.233 −0.02383− 0.387 −0.02544− 0.4417
Im g′/g ±0.4924 ±(−0.592− 0.5587) ±(−0.6046− 0.5751)

vd α [MeV] 53.19
v2u g

2/Λ [eV] 0.00933

me/mµ 0.004802 0.004418− 0.005178 0.00422− 0.005383
mµ/mτ 0.0565 0.048− 0.06494 0.04317− 0.06961

r 0.02989 0.02836− 0.03148 0.02759− 0.03224
δm2 [10−5 eV2] 7.339 7.074− 7.596 6.935− 7.712

|∆m2| [10−3 eV2] 2.455 2.413− 2.494 2.392− 2.513
sin2 θ12 0.305 0.2795− 0.3313 0.2656− 0.3449
sin2 θ13 0.02125 0.01988− 0.02298 0.01912− 0.02383
sin2 θ23 0.551 0.4846− 0.5846 0.4838− 0.5999

Ordering NO
m1 [eV] 0.01746 0.01196− 0.02045 0.01185− 0.02143
m2 [eV] 0.01945 0.01477− 0.02216 0.01473− 0.02307
m3 [eV] 0.05288 0.05099− 0.05405 0.05075− 0.05452

∑

i
mi [eV] 0.0898 0.07774− 0.09661 0.07735− 0.09887

|〈m〉| [eV] 0.01699 0.01188− 0.01917 0.01177− 0.02002
δ/π ±1.314 ±(1.266− 1.95) ±(1.249− 1.961)
α21/π ±0.302 ±(0.2821− 0.3612) ±(0.2748− 0.3708)
α31/π ±0.8716 ±(0.8162− 1.617) ±(0.7973− 1.635)

Nσ 0.02005

Best fit values along with 2σ and 3σ ranges of the parameters and observables in cases

A and A∗, (which refer to (kΛ, kg) = (0,2) and τ = ±0.1045+ i1.01).
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Best fit value 2σ range 3σ range

Re τ ∓0.109 ∓(0.1051− 0.1172) ∓(0.103− 0.1197)
Im τ 1.005 0.9998− 1.007 0.9988− 1.008
β/α 0.03306 0.02799− 0.03811 0.02529− 0.04074
γ/α 0.0001307 0.0001091− 0.0001538 0.0000982− 0.0001663

Re g′/g 0.4097 0.3513− 0.5714 0.3241− 0.5989
Im g′/g ∓0.5745 ∓(0.5557− 0.5932) ∓(0.5436− 0.5944)

vd α [MeV] 893.2
v2u g

2/Λ [eV] 0.008028

me/mµ 0.004802 0.004425− 0.005175 0.004211− 0.005384
mµ/mτ 0.05649 0.04785− 0.06506 0.04318− 0.06962

r 0.0299 0.02838− 0.03144 0.02757− 0.03223
δm2 [10−5 eV2] 7.34 7.078− 7.59 6.932− 7.71

|∆m2| [10−3 eV2] 2.455 2.414− 2.494 2.393− 2.514
sin2 θ12 0.305 0.2795− 0.3314 0.2662− 0.3455
sin2 θ13 0.02125 0.0199− 0.02302 0.01914− 0.02383
sin2 θ23 0.551 0.4503− 0.5852 0.4322− 0.601

Ordering NO
m1 [eV] 0.02074 0.01969− 0.02374 0.01918− 0.02428
m2 [eV] 0.02244 0.02148− 0.02522 0.02101− 0.02574
m3 [eV] 0.05406 0.05345− 0.05541 0.05314− 0.05577

∑

i
mi [eV] 0.09724 0.09473− 0.1043 0.0935− 0.1056

|〈m〉| [eV] 0.01983 0.01889− 0.02229 0.01847− 0.02275
δ/π ±1.919 ±(1.895− 1.968) ±(1.882− 1.977)
α21/π ±1.704 ±(1.689− 1.716) ±(1.681− 1.722)
α31/π ±1.539 ±(1.502− 1.605) ±(1.484− 1.618)

Nσ 0.02435

Best fit values along with 2σ and 3σ ranges of the parameters and observables in cases

B and B∗, (which refer to (kΛ, kg) = (0,2) and τ = ±0.109+ i1.005).
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Best fit value 2σ range 3σ range

Re τ ∓0.1435 ∓(0.137− 0.1615) ∓(0.1222− 0.168)
Im τ 1.523 1.147− 1.572 1.088− 1.594
β/α 17.82 10.99− 21.38 9.32− 23.66
γ/α 0.003243 0.002518− 0.003565 0.00227− 0.003733

Re g′/g −0.8714 −(0.8209− 1.132) −(0.7956− 1.148)
Im g′/g ∓2.094 ∓(1.439− 2.157) ∓(1.409− 2.182)

vd α [MeV] 71.26
v2u g

2/Λ [eV] 0.008173

me/mµ 0.004797 0.00442− 0.005183 0.004215− 0.005378
mµ/mτ 0.05655 0.04806− 0.06507 0.04348− 0.0698

r 0.0301 0.02857− 0.03162 0.0278− 0.03246
δm2 [10−5 eV2] 7.346 7.084− 7.589 6.946− 7.717

|∆m2| [10−3 eV2] 2.44 2.4− 2.479 2.377− 2.498
sin2 θ12 0.303 0.278− 0.3288 0.2657− 0.3436
sin2 θ13 0.02175 0.02035− 0.0234 0.01957− 0.0242
sin2 θ23 0.5571 0.4905− 0.588 0.4551− 0.6026

Ordering IO
m1 [eV] 0.0513 0.04938− 0.0518 0.04882− 0.05207
m2 [eV] 0.05201 0.05012− 0.05248 0.04958− 0.05274
m3 [eV] 0.01512 0.00576− 0.01594 0.00316− 0.0163

∑

i
mi [eV] 0.1184 0.1053− 0.1201 0.102− 0.1208

|〈m〉| [eV] 0.0263 0.0239− 0.04266 0.02288− 0.04551
δ/π ±1.098 ±(1.026− 1.278) ±(0.98− 1.289)
α21/π ±1.241 ±(1.162− 1.651) ±(1.113− 1.758)
α31/π ±0.2487 ±(0.1474− 0.3168) ±(0.069− 0.346)

Nσ 0.0357

Best fit values along with 2σ and 3σ ranges of the parameters and observables in cases

C and C∗, (which refer to (kΛ, kg) = (0,2) and τ = ±0.1453+ i1.523).
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Best fit value 2σ range 3σ range

Re τ ±0.179 ±(0.165− 0.1963) ±(0.1589− 0.199)
Im τ 1.397 1.262− 1.496 1.236− 1.529
β/α 15.35 11.67− 18.66 10.79− 21.09
γ/α 0.002924 0.002582− 0.003289 0.002443− 0.003459

Re g′/g −1.32 −(1.189− 1.438) −(1.131− 1.447)
Im g′/g ±1.733 ±(1.357− 1.948) ±(1.306− 2.017)

vd α [MeV] 68.42
v2u g

2/Λ [eV] 0.00893

me/mµ 0.004786 0.004431− 0.005186 0.004221− 0.005386
mµ/mτ 0.0554 0.0481− 0.06502 0.04343− 0.06968

r 0.03023 0.02859− 0.03163 0.02775− 0.03244
δm2 [10−5 eV2] 7.367 7.088− 7.59 6.937− 7.713

|∆m2| [10−3 eV2] 2.437 2.4− 2.479 2.378− 2.499
sin2 θ12 0.3031 0.2791− 0.3286 0.2657− 0.3436
sin2 θ13 0.02184 0.02038− 0.02337 0.01954− 0.0242
sin2 θ23 0.5577 0.5509− 0.5869 0.5482− 0.6013

Ordering IO
m1 [eV] 0.05122 0.05051− 0.05185 0.05023− 0.05212
m2 [eV] 0.05193 0.05125− 0.05253 0.05098− 0.05279
m3 [eV] 0.01495 0.01293− 0.01613 0.01223− 0.01649

∑

i
mi [eV] 0.1181 0.1149− 0.1203 0.1139− 0.1212

|〈m〉| [eV] 0.03104 0.02666− 0.03597 0.02515− 0.03677
δ/π ±1.384 ±(1.32− 1.4245) ±(1.271− 1.437)
α21/π ±1.343 ±(1.227− 1.457) ±(1.171− 1.479)
α31/π ±0.806 ±(0.561− 1.092) ±(0.448− 1.149)

Nσ 0.3811

Best fit values along with 2σ and 3σ ranges of the parameters and observables in cases

D and D∗, (which refer to (kΛ, kg) = (0,2) and τ = ±0.179+ i1.397).
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Best fit value 3σ range

Re τ ∓0.4996 ∓(0.48− 0.5084)
Im τ 1.309 1.246− 1.385
β/α 0.000243 0.0002004− 0.0002864
γ/α 0.03335 0.02799− 0.03926

Re g′/g −0.06454 −(0.01697− 0.1215)
Im g′/g ∓0.569 ∓(0.4572− 0.6564)

vd α [MeV] 1125
v2u g

2/Λ [eV] 0.0174

me/mµ 0.004797 0.004393− 0.005197
mµ/mτ 0.05626 0.04741− 0.0654

r 0.02985 0.02826− 0.03146
δm2 [10−5 eV2] 7.332 7.055− 7.593

|∆m2| [10−3 eV2] 2.456 2.413− 2.497
sin2 θ12 0.311 0.2895− 0.3375
sin2 θ13 0.02185 0.02041− 0.02351
sin2 θ23 0.4469 0.43− 0.4614

Ordering NO
m1 [eV] 0.01774 0.01703− 0.01837
m2 [eV] 0.0197 0.01906− 0.02025
m3 [eV] 0.05299 0.05251− 0.05346

∑

i
mi [eV] 0.09043 0.08874− 0.09195

|〈m〉| [eV] 0.006967 0.006482− 0.007288
δ/π ±1.601 ±(1.287− 1.828)
α21/π ±1.093 ±(0.8593− 1.178)
α31/π ±0.7363 ±(0.3334− 0.9643)

Nσ 2.147

Best fit values along with 2σ and 3σ ranges of the parameters and observables in cases

E and E∗, (which refer to (kΛ, kg) = (0,2) and τ = ±0.4996+ i1.309).
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Conclusions.

• Understanding the origin of the pattern of neutrino mixing and of neutrino mass squared

differences that emerged from the neutrino oscillation data in the recent years is one of

the most challenging problems in neutrino physics. It is part of the fundamental problem

of understanding the origin of flavour in particle physics.

• The modular invariance (finite modular group symmetries) is a new elegant and promis-

ing approach to the flavour problem. It has been successfully applied to the lepton flavour

problem. First encouring attempts are made to treat both the quark and lepton flavour

problems (see, e.g., H. Okada, M. Tanimoto, arXiv:2005.00775).

• In its minimal version the approach involves just one complex scalar field – the modulus

τ, and a certain rather small number of constant parameters. The modular symmetry is

broken by the the VEV of τ.

• The models of lepton flavour based of finite modular symmetries, lead to testable

predictions for min(mj), type of the neutrino mass spectrum (NO or IO),
∑

i
mi, the

CPV Dirac and Majorana phases, |〈m〉|, θ23, as well as of correlations between different

observables.

• The modular invariance approach to the flavour problem is still at the early stage of

its development, with many aspects still to be understood.
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