Theoretical Prospective on Lepton Flavour Problem

S. T. Petcov
SISSA/INFN, Trieste, Italy, and Kavli IPMU, University of Tokyo, Japan

RECONNECT: Remote Conference on
New Concepts in Particle Physics
Organiser: IPPP, Durham, UK
May 26, 2020

The Lepton Flavour Problem

Consists of three basic elements (sub-problems), namely, understanding:

- Why $m_{\nu_{j}} \lll m_{e, \mu, \tau}, m_{q}, q=u, c, t, d, s, b\left(m_{\nu_{j}} \lesssim 0.5 \mathrm{eV}, m_{l} \geq 0.511 \mathrm{MeV}, m_{q} \gtrsim 2 \mathrm{MeV}\right)$;
- The origins of the patterns of neutrino mixing of 2 large and 1 small angles, and of $\Delta m_{i j}^{2}$, i.e., of $\Delta m_{21}^{2} \ll\left|\Delta m_{31}^{2}\right|, \Delta m_{21}^{2} /\left|\Delta m_{31}^{2}\right| \cong 1 / 30$;
- The origin of the hierarchical pattern of charged lepton masses: $m_{e} \ll m_{\mu} \ll m_{\tau}$, $m_{e} / m_{\mu} \cong 1 / 200, m_{\mu} / m_{\tau} \cong 1 / 17$.

Each of these three sub-problems is by itself a formidable problem. As a consequence, solutions to each individual problem has been proposed, and I will illustrate these solutions. However, a universal "elegant and convincing" solution to all three problems is still lacking. I will describe a novel approach to the flavour problem that seems promising.

The renewed attemps to seek new better solutions of the flavour problem than those already proposed were stimulated primarily by the a remarkable progress made in the studies of neutrino oscillations, which beagn 22 years ago with the discovery of oscillations of the atmospheric ν_{μ} and $\bar{\nu}_{\mu}$ by SuperKamiokande experiment. This lead, in particular, to the determination of the pattern of neutrino mixing, which turn out to consist of two large and one small mixing angles angles.

Understanding the origin of the pattern of neutrino mixing and of neutrino mass squared differences that emerged from the neutrino oscillation data in the recent years is by itself a formidable problem. It is one of three "constituents" of the lepton flavour problem which in turn is a part of the more general fundamental problem in particle physics of understanding the origins of flavour in both the quark and lepton sectors, i.e., of the patterns of quark masses and mixing, and of the charged lepton and neutrino masses and of neutrino mixing.
"Asked what single mystery, if he could choose, he would like to see solved in his lifetime, Weinberg doesnt have to think for long: he wants to be able to explain the observed pattern of quark and lepton masses."

From Model Physicist, CERN Courier, 13 October 2017.

[^0]Of fundamental importance are also:

- the determination of the status of lepton charge conservation and the nature - Dirac or Majorana - of massive neutrinos (which is one of the most challenging and pressing problems in present day elementary particle physics) (GERDA, CUORE, KamLAND-Zen, EXO, LEGEND, nEXO,...);
- determining the status of CP symmetry in the lepton sector (T2K, NO $\nu \mathbf{A}$; T2HK, DUNE);
- determination of the type of spectrum neutrino masses possess, or the "neutrino mass ordering" (T2K + NO νA; JUNO; PINGU, ORCA; T2HKK, DUNE);
- determination of the absolute neutrino mass scale, or $\min \left(m_{j}\right)$ (KATRIN, new ideas; cosmology).

The program of research extends beyond 2035.

These are the "big questions" especially relevant to the reference 3 -neutrino mixing scheme, which I am going to employ for the discussion of the lepton flavour problem.

- BS3 2 RM: eV scale sterile ν^{\prime} 's; NSI's; ChLFV processes ($\mu \rightarrow e+\gamma, \mu \rightarrow 3 e, \mu^{-}-e^{-}$ conversion on (A,Z)); $\nu-$ related BSM physics at the TeV scale ($N_{j R}, H^{--}, H^{-}$, etc.).

[^1]Reference Model: 3- ν mixing

$$
\nu_{l \mathrm{~L}}=\sum_{j=1}^{3} U_{l j} \nu_{j \mathrm{~L}} \quad l=e, \mu, \tau
$$

The PMNS matrix $U-3 \times 3$ unitary. $\nu_{j}, m_{j} \neq 0$: Dirac or Majorana particles.

Data: 3ν s are light: $\nu_{1,2,3}, m_{1,2,3} \lesssim 0.5 \mathrm{eV}$.
$3-\nu$ mixing: 3-flavour neutrino oscillations possible.
ν_{μ}, E; at distance $L: P\left(\nu_{\mu} \rightarrow \nu_{\tau(e)}\right) \neq 0, P\left(\nu_{\mu} \rightarrow \nu_{\mu}\right)<1$ $P\left(\nu_{l} \rightarrow \nu_{l^{\prime}}\right)=P\left(\nu_{l} \rightarrow \nu_{l^{\prime}} ; E, L ; U ; m_{2}^{2}-m_{1}^{2}, m_{3}^{2}-m_{1}^{2}\right)$

Three Neutrino Mixing

$$
\nu_{l \mathrm{~L}}=\sum_{j=1}^{3} U_{l j} \nu_{j \mathrm{~L}} .
$$

U is the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) neutrino mixing matrix,

$$
U=\left(\begin{array}{ccc}
U_{e 1} & U_{e 2} & U_{e 3} \\
U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\
U_{\tau 1} & U_{\tau 2} & U_{\tau 3}
\end{array}\right)
$$

- $U-n \times n$ unitary:
mixing angles: $\quad \frac{1}{2} n(n-1) \quad 1 \quad 3$
CP-violating phases:
- ν_{j} - Dirac: $\quad \frac{1}{2}(n-1)(n-2) \quad 0 \quad 1 \quad 3$
- ν_{j} - Majorana: $\frac{1}{2} n(n-1) \quad 1 \quad 3 \quad 6$
$n=3: 1$ Dirac and
2 additional CP-violating phases, Majorana phases
S.M. Bilenky, J. Hosek, S.T.P., 1980

PMNS Matrix: Standard Parametrization

$$
\begin{gathered}
U=V P, \quad P=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & e^{i \frac{\alpha_{21}}{2}} & 0 \\
0 & 0 & e^{i \frac{c_{31}}{2}}
\end{array}\right), \\
V=\left(\begin{array}{ccc}
s_{12} c_{13} & s_{13} e^{-i \delta} \\
-s_{12} c_{23}-c_{12} s_{23} s_{13} e^{i \delta} & c_{12} c_{23}-s_{12} s_{23} s_{13} e^{i \delta} & s_{23} c_{13} \\
s_{12} s_{23}-c_{12} c_{23} s_{13} e^{i \delta} & -c_{12} s_{23}-s_{12} c_{23} s_{13} e^{i \delta} & c_{23} c_{13}
\end{array}\right)
\end{gathered}
$$

- $s_{i j} \equiv \sin \theta_{i j}, c_{i j} \equiv \cos \theta_{i j}, \theta_{i j}=\left[0, \frac{\pi}{2}\right]$,
- δ - Dirac CPV phase, $\delta=[0,2 \pi] ; \mathrm{CP}$ inv.: $\delta=0, \pi, 2 \pi$;
- α_{21}, α_{31} - Majorana CPV phases; CP inv.: $\alpha_{21(31)}=k\left(k^{\prime}\right) \pi, k\left(k^{\prime}\right)=0,1,2 \ldots$
S.M. Bilenky et al., 1980
- $\Delta m_{\odot}^{2} \equiv \Delta m_{21}^{2} \cong 7.34 \times 10^{-5} \mathrm{eV}^{2}>0, \sin ^{2} \theta_{12} \cong 0.305, \cos 2 \theta_{12} \gtrsim 0.306(3 \sigma)$,
- $\left|\Delta m_{31(32)}^{2}\right| \cong 2.448(2.502) \times 10^{-3} \mathrm{eV}^{2}, \sin ^{2} \theta_{23} \cong 0.545$ (0.551), NO (IO) ,
- θ_{13} - the CHOOZ angle: $\sin ^{2} \theta_{13}=0.0222$ (0.0223)
F. Capozzi et al. (Bari Group), arXiv:2003.08511.
- $\operatorname{sgn}\left(\Delta m_{\text {atm }}^{2}\right)=\operatorname{sgn}\left(\Delta m_{31(32)}^{2}\right)$ not determined

$$
\begin{aligned}
& \Delta m_{\mathrm{atm}}^{2} \equiv \Delta m_{31}^{2}>0, \quad \text { normal mass ordering }(\mathrm{NO}) \\
& \Delta m_{\mathrm{atm}}^{2} \equiv \Delta m_{32}^{2}<0, \quad \text { inverted mass ordering }(\mathrm{IO})
\end{aligned}
$$

Convention: $m_{1}<m_{2}<m_{3}-$ NO, $\quad m_{3}<m_{1}<m_{2}$ - IO

$$
\begin{gathered}
m_{1} \ll m_{2}<m_{3}, \\
m_{3} \ll m_{1}<m_{2}, \\
m_{1} \cong m_{2} \cong m_{3}, m_{1,2,3}^{2} \gg\left|\Delta m_{31(32)}^{2}\right|, \\
\mathrm{QD} ; \\
m_{j} \gtrsim 0.10 \mathrm{eV} .
\end{gathered}
$$

- $m_{2}=\sqrt{m_{1}^{2}+\Delta m_{21}^{2}}, \quad m_{3}=\sqrt{m_{1}^{2}+\Delta m_{31}^{2}}-\mathrm{NO}$;
- $m_{1}=\sqrt{m_{3}^{2}+\Delta m_{23}^{2}-\Delta m_{21}^{2}}, \quad m_{2}=\sqrt{m_{3}^{2}+\Delta m_{23}^{2}}-\mathrm{IO}$;

S.T. Petcov, RECONNECT, 26/05/2020

Parameter	Ordering	Best fit	1σ range	2σ range	3σ range	" 1σ " $(\%)$
$\delta m^{2} / 10^{-5} \mathrm{eV}^{2}$	NO	7.34	$7.20-7.51$	$7.05-7.69$	$6.92-7.90$	2.2
	IO	7.34	$7.20-7.51$	$7.05-7.69$	$6.92-7.91$	2.2
$\sin ^{2} \theta_{12} / 10^{-1}$	NO	3.05	$2.92-3.19$	$2.78-3.32$	$2.65-3.47$	4.5
	IO	3.03	$2.90-3.17$	$2.77-3.31$	$2.64-3.45$	4.5
$\left\|\Delta m^{2}\right\| / 10^{-3} \mathrm{eV}^{2}$	NO	2.485	$2.453-2.514$	$2.419-2.547$	$2.389-2.578$	1.3
	IO	2.465	$2.434-2.495$	$2.404-2.526$	$2.374-2.556$	1.2
$\sin ^{2} \theta_{13} / 10^{-2}$	NO	2.22	$2.14-2.28$	$2.07-2.34$	$2.01-2.41$	3.0
	IO	2.23	$2.17-2.30$	$2.10-2.37$	$2.03-2.43$	3.0
$\sin ^{2} \theta_{23} / 10^{-1}$	NO	5.45	$4.98-5.65$	$4.54-5.81$	$4.36-5.95$	4.9
	IO	5.51	$5.17-5.67$	$4.60-5.82$	$4.39-5.96$	4.7
δ / π	NO	1.28	$1.10-1.66$	$0.95-1.90$	$0-0.07 \oplus 0.81-2$	16
	IO	1.52	$1.37-1.65$	$1.23-1.78$	$1.09-1.90$	9

$$
\delta m^{2} \equiv \Delta m_{21}^{2} ; \quad \Delta m^{2} \equiv \Delta m_{31(32)(+)}^{2} 0.5 \Delta m_{21}^{2}, \mathbf{N O}(\mathbf{I O}) .
$$

F. Capozzi et al. (Bari Group), arXiv:2003.08511.

- Dirac phase $\delta: \nu_{l} \leftrightarrow \nu_{l^{\prime}}, \bar{\nu}_{l} \leftrightarrow \bar{\nu}_{l^{\prime}}, l \neq l^{\prime} ; \quad A_{C P}^{\left(l, l^{\prime}\right)} \propto J_{\mathrm{CP}} \propto \sin \theta_{13} \sin \delta:$
P.I. Krastev, S.T.P., 1988

$$
J_{C P}=\operatorname{Im}\left\{U_{e 1} U_{\mu 2} U_{e 2}^{*} U_{\mu 1}^{*}\right\}=\frac{1}{8} \sin 2 \theta_{12} \sin 2 \theta_{23} \sin 2 \theta_{13} \cos \theta_{13} \sin \delta
$$

Current data: $\left|J_{C P}\right| \lesssim 0.035$ (can be relatively large!); b.f.v. with $\delta=3 \pi / 2$: $J_{C P} \cong-0.035$.

- Majorana phases α_{21}, α_{31} :
$-\nu_{l} \leftrightarrow \nu_{l^{\prime}}, \bar{\nu}_{l} \leftrightarrow \bar{\nu}_{l^{\prime}}$ not sensitive;
S.M. Bilenky et al., 1980;
P. Langacker et al., 1987
$-|<m>|$ in $(\beta \beta)_{0 \nu}-$ decay depends on α_{21}, α_{31};
$-\Gamma(\mu \rightarrow e+\gamma)$ etc. in SUSY theories depend on $\alpha_{21,31}$;
- BAU, leptogenesis scenario: $\delta, \alpha_{21,31!}$

$$
\delta \cong 3 \pi / 2 ?
$$

$$
\begin{aligned}
J_{C P} & =\operatorname{Im}\left\{U_{e 1} U_{\mu 2} U_{e 2}^{*} U_{\mu 1}^{*}\right\} \\
& =\frac{1}{8} \sin 2 \theta_{12} \sin 2 \theta_{23} \sin 2 \theta_{13} \cos \theta_{13} \sin \delta
\end{aligned}
$$

Latest global analysis: results for NO (IO) spectrum

- Best fit value: $\delta=1.28$ (1.52) π;
- $\delta=0$ or 2π are disfavored at 2.6 (>5) σ;
- $\delta=\pi$ is allowed (disfavored) at 1.6 (3.2) σ
- $\delta=\pi / 2$ is strongly disfavored at $4.2(>5) \sigma$
- At 3σ : δ / π is found to lie in the intervals
$0.00-0.07 \oplus 0.81-2.00(1.09-1.90)$.
- Data favors NO: IO disfavored at 3.2σ.
F. Capozzi et al. (Bari Group), arXiv:2003.08511.

Preceding Analyses

- Best fit value: $\delta=1.32(1.52) \pi$ [1.30 (1.54) π];
- $\delta=0$ or 2π are disfavored at 3.0 (3.6) σ [2.6(3.0) σ];
- $\delta=\pi$ is disfavored at $1.8(3.6) \sigma$ [1.7 (3.3) σ];
- $\delta=\pi / 2$ is strongly disfavored at 4.4 (5.2) σ [4.3(5.0) σ].
- At $3 \sigma: \delta / \pi$ is found to lie in 0.83-1.99 (1.07-1.92) [1.07-1.97 (0.80-2.08)].
F. Capozzi, E. Lisi et al., arXiv:1804.09678 [E. Esteban et al., NuFit 3.2 (Jan., 2018)]
- Data favors NO: IO disfavored at 3.1σ.
F. Capozzi et al., 1804.09678.
S.T. Petcov, RECONNECT, 26/05/2020

LBL Acc + Solar + KamLAND + SBL Reactors + Atmos

Latest results from T2K

Best fit value: $\delta=-1.89(-1.38)$, NO (IO).
$\delta=0(\pi)$ disfavored at $3 \sigma(2 \sigma)$
At $3 \sigma: \delta$ is found to lie in $[-3.41,-0.03]([-2.54,-0.32]), \mathrm{NO}$ (IO).

Quark Masses and Mixing

The observed patterns of the masses of up- and down-type quarks and of the charged leptons of the three families of SM are characterised by strong hierarchies:

$$
\begin{gathered}
m_{d} \ll m_{s} \ll m_{b}, \frac{m_{d}}{m_{s}}=5.02 \times 10^{-2}, \frac{m_{s}}{m_{b}}=2.22 \times 10^{-2}, m_{b}=4.18 \mathrm{GeV} \\
m_{u} \ll m_{c} \ll m_{t}, \frac{m_{u}}{m_{c}}=1.7 \times 10^{-3}, \frac{m_{c}}{m_{t}}=7.3 \times 10^{-3}, m_{t}=172.9 \mathrm{GeV} ; \\
m_{e} \ll m_{\mu} \ll m_{\tau}, \frac{m_{e}}{m_{\mu}}=4.8 \times 10^{-3}, \frac{m_{\mu}}{m_{\tau}}=5.95 \times 10^{-2}, m_{\tau}=1776.86 \mathrm{MeV}
\end{gathered}
$$

The three quark mixing angles are small and hierarchical,

$$
\theta_{12}^{q}=12.96^{\circ}, \quad \theta_{23}^{q}=2.42^{\circ}, \quad \theta_{13}^{q}=0.022^{\circ},
$$

while the lepton mixing is characterised by two large and one small angles,

$$
\theta_{12}^{l}=33.65^{\circ}, \quad \theta_{23}^{l}=47.1^{\circ}, \quad \theta_{13}^{l}=8.49^{\circ} .
$$

The quoted values correspond to the standard" parametrisations of $V_{\text {CKM }}$ and $U_{\text {PMNS }}$. The Dirac CPV phases in CKM and PMNS matrices read:

$$
\delta_{q}=(73.5-5.1+4.2)^{\circ}, \quad \delta_{l}=(1.37-0.16+0.18) \times 180^{\circ}
$$

F. Capozzi et al. (Bari Group), arXiv:1804.09678.

Figures by P. Novichkov

The Flavour Problem: Modular Invariance Approach

In this approach the flavour (modular) and CP symmetries are broken by the vacuum expectation value (vev) of a single scalar (flavon) field - the modulus τ.
Many of the drawbacks of the widely studied alternative approaches are absent in the modular invariance approach to the flavour problem.

Modular invariance has been investigated in the context of field and superstring theories, being a feature of a number of theoretical physics constructions (theories with extra dimensions compactified on a torus (or tori), superstring theories on tori or orbifolds, supergravity theories) [2][7]; it can be present in theories with global or local super-symmetry and appears to be a property of the quantum Hall effect [8]-[13]. The modular forms which are an integral part of the approach (see below) have been extensively studied by mathematicians, in particular, in connection with number theory [14].
[2] R. Blumenhagen, B. Kors, D. Lust and S. Stieberger, Phys. Rept. 445, 1 (2007). [3] L. E. Ibanez, Phys. Lett. B181, 269 (1986). [4] S. Hamidi and C. Vafa, Nucl. Phys. B279, 465 (1987). [5] S. Ferrara, D. Lust and S. Theisen, Phys. Lett. B233, 147 (1989). [6] D. Cremades, L. E. Ibanez and F. Marchesano, JHEP 0405, 079 (2004). [7] S. Ferrara, D. Lust, A. D. Shapere and S. Theisen, Phys. Lett. B225, 363 (1989). [8] C. A. Ltken and G. G. Ross, Phys. Rev. D45, 11837 (1992). [9] A. Cappelli and G. R. Zemba, Nucl. Phys. B490, 595 (1997). [10] C. P. Burgess and B. P. Dolan, Phys. Rev. B63, 155309 (2001). [11] M. Lippert, R. Meyer and A. Taliotis, JHEP 1501, 023 (2015). [12] C.A. Lutken, EPJ Web Conf. 71, 0079 (2014) 00079 (doi:10.1051/epjconf/20147100079). [13] C. A. Lutken, Phys. Rev. B99, 195152 (2019). [14] H. M. Farkas and I. Kra, Theta Constants, Riemann Surfaces and the Modular Group, Graduate Studies in Mathematics, vol. 37, American Mathematical Society (2001).

[^2]
The Modular Group and the Finite Modular Groups

The modular group $\bar{\Gamma}$ - group of linear fractional transformations γ acting on the complex variable τ belonging to the upper-half complex plane:

$$
\gamma \tau=\frac{a \tau+b}{c \tau+d}, \quad \gamma=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right), a, b, c, d \in Z, a d-b c=1, \operatorname{Im} \tau>0
$$

$\bar{\Gamma}$ is generated by two transformations S and T satisfying

$$
S^{2}=(S T)^{3}=I,
$$

I being the identity element, and acting on τ as

$$
\tau \xrightarrow{S}-\frac{1}{\tau}, \quad \tau \xrightarrow{T} \tau+1
$$

S and T can be represented as

$$
S=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), \quad T=\left(\begin{array}{cc}
1 & 1 \\
0 & 1
\end{array}\right)
$$

Complex variable τ - modulus (the vev of $\tau(x)$).
$\bar{\Gamma}$ - inhomogeneous modular group.

The Fundamental Domain of $\bar{\Gamma}$ shown for $\operatorname{Im} \tau \leq 2$ (the red dots correspond to solutions of the lepton flavour problem, see further).
P.P. Novichkov, J.T. Penedo, STP, A.V. Titov, arXiv:1811.04933.
S.T. Petcov, RECONNECT, 26/05/2020
$\bar{\Gamma}$ is isomorphic to the projective special linear group $\operatorname{PSL}(2, Z)=S L(2, Z) / Z_{2}$, $S L(2, Z)$ is the special linear group of 2×2 matrices with integer elements and unit determinant, and $Z_{2}=\{I,-I\}$ is its centre. $S L(2, Z)=\Gamma(1) \equiv \Gamma$ contains a series of infinite normal subgroups $\Gamma(N)$,

$$
\Gamma(N)=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S L(2, Z), \quad\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \quad(\bmod N)\right\}, N=1,2,3, \ldots,
$$

called the principal congruence subgroups. For $N=1$ and 2, we define the groups $\bar{\Gamma}(N) \equiv \Gamma(N) /\{I,-I\}$ with $\bar{\Gamma}(1) \equiv \bar{\Gamma}$. For $N>2, \bar{\Gamma}(N) \equiv \Gamma(N)$ since $\Gamma(N)$ does not contain the subgroup $\{I,-I\}$.

The quotient groups $\Gamma_{N} \equiv \bar{\Gamma} / \bar{\Gamma}(N)$ are called finite modular groups. Remarkably, for $N \leq 5, \Gamma_{N}$ are isomorphic to non-Abelian discrete groups widely used in flavour model building:
$\Gamma_{2} \simeq S_{3}, \Gamma_{3} \simeq A_{4}, \Gamma_{4} \simeq S_{4}$ and $\Gamma_{5} \simeq A_{5}$.
Γ_{N} is presented by two generators S and T satisfying:

$$
S^{2}=(S T)^{3}=T^{N}=I
$$

The group theory of $\Gamma_{2} \simeq S_{3}, \Gamma_{3} \simeq A_{4}, \Gamma_{4} \simeq S_{4}$ and $\Gamma_{5} \simeq A_{5}$ is summarised, e.g., in P.P. Novichkov et al., JHEP 07 (2019) 165, arXiv:1905.11970.

Group	Number of elements	Generators	Irreducible representations
S_{4}	24	$S, T(U)$	$\mathbf{1}, \mathbf{1}^{\prime}, \mathbf{2}, \mathbf{3}, \mathbf{3}^{\prime}$
A_{4}	12	S, T	$\mathbf{1}^{\prime}, \mathbf{1}^{\prime}, \mathbf{1}^{\prime \prime}, \mathbf{3}$
T^{\prime}	24	$S, T(R)$	$\mathbf{1}, \mathbf{1}^{\prime}, \mathbf{1}^{\prime \prime}, \mathbf{2}, \mathbf{2}^{\prime}, \mathbf{2}^{\prime \prime}, \mathbf{3}$
A_{5}	60	\widetilde{S}, \tilde{T}	$\mathbf{1}, \mathbf{3}, \mathbf{3}^{\prime}, \mathbf{4}, 5$

Number of elements, generators and irreducible representations of S_{4}, A_{4}, T^{\prime} and A_{5} discrete groups.

Examples of symmetries: A_{4}, S_{4}, A_{5}.
From M. Tanimoto et al., arXiv:1003.3552
S.T. Petcov, RECONNECT, 26/05/2020

Matter Fields and Modular Forms

The matter(super)fields (charged lepton, neutrino, quark) transform under $\bar{\Gamma}$ as "weighted" multiplets:

$$
\psi_{i}=(c \tau+d)^{-k_{\psi}} \rho_{i j}(\gamma) \psi_{j}, \quad \gamma \in \bar{\Gamma}
$$

k_{ψ} is the weight and $\rho(\gamma)$ is a unitary representation of $\bar{\Gamma} ; k_{\psi}$ can be positive integer, or negative integer, or $0: k \in Z$.
$\rho(\gamma)$ is the identity matrix whenever $\gamma \in \bar{\Gamma}(N)$.
Thus, effectively, $\rho(\gamma)$ is a unitary representation of the finite modular group Γ_{N}.
F. Feruglio, arXiv:1706.08749; S. Ferrara et al., Phys.Lett. B233 (1989) 147, B225 (1989) 363

Modular Forms

The key elements of the considered framework are modular forms $f(\tau)$ of weight k_{f} and level N - holomorphic functions of τ, which transform under $\bar{\Gamma}$ as follows:

$$
f(\gamma \tau)=(c \tau+d)^{k_{f}} f(\tau), \quad \gamma \in \bar{\Gamma},
$$

In the case under discussion non-trivial modular forms exist only for positive even integer weight k_{f}.
For given k, N (N is a natural number), the modular forms span a linear space of finite dimension:
of weight k and level $3, \mathcal{M}_{k}\left(\Gamma_{3} \simeq A_{4}\right)$, is $k+1$;
of weight k and level $4, \mathcal{M}_{k}\left(\Gamma_{4} \simeq S_{4}\right)$, is $2 k+1$;
of weight k and level $5, \mathcal{M}_{k}\left(\Gamma_{5} \simeq A_{5}\right)$, is $5 k+1$.
Thus, $\operatorname{dim} \mathcal{M}_{2}\left(\Gamma_{3} \simeq A_{4}\right)=3, \operatorname{dim} \mathcal{M}_{2}\left(\Gamma_{4} \simeq S_{4}\right)=5, \operatorname{dim} \mathcal{M}_{2}\left(\Gamma_{5} \simeq A_{5}\right)=11$.
One can find a basis $F(\tau) \equiv\left(f_{1}(\tau), f_{2}(\tau), \ldots\right)^{T}$ in each of these spaces such that for any $\gamma \in \bar{\Gamma}, F(\gamma \tau)$ belongs to the same space and transforms according to a unitary irreducible representation r of Γ_{N} :

$$
F(\gamma \tau)=(c \tau+d)^{k_{F}} \rho_{\mathrm{r}}(\gamma) F(\tau), \quad \gamma \in \bar{\Gamma}
$$

This result is at the basis of the modular invariance approach to the flavour problem proposed in F. Feruglio, arXiv:1706.08749.

The Framework

$\mathcal{N}=1$ rigid (global) SUSY, the matter action \mathcal{S} reads:

$$
\mathcal{S}=\int \mathrm{d}^{4} x \mathrm{~d}^{2} \theta \mathrm{~d}^{2} \bar{\theta} K(\tau, \bar{\tau}, \psi, \bar{\psi})+\left(\int \mathrm{d}^{4} x \mathrm{~d}^{2} \theta W(\tau, \psi)+\text { h.c. }\right)
$$

K is the Kähler potential, W is the superpotential, ψ denotes a set of chiral supermultiplets ψ_{i}, θ and $\bar{\theta}$ are Grassmann variables;
τ is the modulus chiral superfield, whose lowest component is the complex scalar field acquiring a VEV (we use in what follows the same notation τ for the lowest complex scalar component of the modulus superfield and call this component also "modulus").
τ and ψ_{i} transform under the action of $\bar{\Gamma}$ in a certain way (S. Ferrara et al., PL B225 (1989) 363 and B233 (1989) 147). Assuming that $\psi_{i}=\psi_{i}(x)$ transform in a certain irrep r_{i} of Γ_{N}, the transformations read:

$$
\gamma=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \bar{\Gamma}: \quad\left\{\begin{array}{l}
\tau \rightarrow \frac{a \tau+b}{c \tau+d} \\
\psi_{i} \rightarrow(c \tau+d)^{-k_{i}} \rho_{\mathbf{r}_{i}}(\gamma) \psi_{i}
\end{array}\right.
$$

ψ_{i} is not a multiplet of modular forms, $\left(-k_{i}\right)$ can be odd and/or negative. Invariance of \mathcal{S} under these transformations implies (global SUSY):

$$
W(\tau, \psi) \rightarrow W(\tau, \psi),
$$

The superpotential can be expanded in powers of ψ_{i} :

$$
W(\tau, \psi)=\sum_{n} \sum_{\left\{i_{1}, \ldots, i_{n}\right\}} \sum_{s} g_{i_{1} \ldots i_{n}, s}\left(Y_{i_{1} \ldots i_{n}, s}(\tau) \psi_{i_{1}} \ldots \psi_{i_{n}}\right)_{1, s}
$$

1 stands for an invariant singlet of Γ_{N}. For each set of n fields $\left\{\psi_{i_{1}}, \ldots, \psi_{i_{n}}\right\}$, the index s labels the independent singlets. Each of these is accompanied by a coupling constant $g_{i_{1} \ldots i_{n}, s}$ and is obtained using a modular multiplet $Y_{i_{1} \ldots i_{n}, s}$ of the requisite weight. To ensure invariance of W under Γ_{N}, $Y_{i_{1} \ldots i_{n}, s}(\tau)$ must transform as:

$$
Y(\tau) \xrightarrow{\gamma}(c \tau+d)^{k_{\gamma}} \rho_{\mathbf{r}_{\gamma}}(\gamma) Y(\tau),
$$

\mathbf{r}_{Y} is a representation of Γ_{N}, and k_{Y} and r_{Y} are such that

$$
\begin{align*}
& k_{Y}=k_{i_{1}}+\cdots+k_{i_{n}}, \tag{1}\\
& \mathbf{r}_{Y} \otimes \mathbf{r}_{i_{1}} \otimes \ldots \otimes \mathbf{r}_{i_{n}} \supset \mathbf{1} . \tag{2}
\end{align*}
$$

Thus, $Y_{i_{1} \ldots i_{n}, s}(\tau)$ represents a multiplet of weight k_{Y} and level N modular forms transforming in the representation r_{Y} of Γ_{N}.

It is of crucial importance for model building to find the basis of modular forms of the lowest weight 2 transforming in irreps of Γ_{N}.
Multiplets of Γ_{N} of higher weight modular forms can be constructed from tensor products of the lowest weight 2 multiplets (they represent homogeneous polynomials of the weight 2 modular forms).

For ($\Gamma_{3} \simeq A_{4}$), the generating (basis) modular forms of weight 2 were shown to form a 3 of A_{4} (expressed in terms of the Dedekind eta function).
F. Feruglio, arXiv:1706.08749

For ($\Gamma_{4} \simeq S_{4}$), the 5 basis modular forms of weight 2 were shown to form a 2 and a 3^{\prime} of S_{4} (expressed in terms of the Dedekind eta function).
J. Penedo, STP, arXiv:1806.11040

For $\left(\Gamma_{5} \simeq A_{5}\right)$, the 11 basis modular forms of weight 2 were shown to form a 3 , a 3^{\prime} and a 5 of A_{5} (expressed in terms of the Jacobi theta function).
P.P. Novichkov, J. Penedo, STP, A.V. Titov, arXiv:1812.02158

For ($\Gamma_{2} \simeq S_{3}$), the 2 basis modular forms of weight 2 were shown to form a 2 of S_{3} (expressed in terms of the Dedekind eta function).
T. Kobayashi, K. Tanaka, T.H. Tatsuishi, arXiv:1803.10391
S.T. Petcov, RECONNECT, 26/05/2020

Multiplets of higher weight modular forms have been also constructed from tensor products of the lowest weight 2 multiplets:
i) for $N=4$ (i.e., S_{4}), multiplets of weight 4 (weight $k \leq 10$) were derived in arXiv:1806.11040 (arXiv:1811.04933);
ii) for $N=3$ (i.e., A_{4}) multiplets of weight $k \leq 6$ were found in arXiv:1706.08749;
iii) for $N=5$ (i.e., A_{5}), multiplets of weight $k \leq 10$ were derived in arXiv:1812.02158.

The modular forms of level $N=2,3,4$ for $\Gamma_{2,3,4} \simeq S_{3}, A_{4}, S_{4}$ have been constructed by use of the Dedekind eta function, $\eta(\tau)$,

$$
\eta(\tau)=q^{1 / 24} \prod_{n=1}^{\infty}\left(1-q^{n}\right), \quad q=e^{i 2 \pi \tau}
$$

For $A_{4}, \eta(3 \tau), \eta(\tau / 3), \eta((\tau+1) / 3)$ and $\eta((\tau+2) / 3)$ were used.
F. Feruglio, arXiv:1706.08749

For $S_{4}, \eta(\tau+1 / 2), \eta(4 \tau), \eta(\tau / 4), \eta((\tau+1) / 4), \eta((\tau+2) / 4)$ and $\eta((\tau+3) / 4)$ were used.
J.T. Penedo, STP, arXiv:1806.11040

Modular forms of weight 2

Level $\boldsymbol{N}=3 \quad\left(\Gamma_{3} \simeq A_{4}: \quad S^{2}=(S T)^{3}=T^{3}=I\right)$

Nk	0	2	4	6
3	1	3	5	7

S
Level $\boldsymbol{N}=4 \quad\left(\Gamma_{4} \simeq S_{4}: \quad S^{2}=(S T)^{3}=T^{4}=I\right)$

Nk	0	2	4	6
4	1	5	9	13

Penedo, Petcov,
$T\left(\tau+\frac{1}{2}\right), \quad \eta(4 \tau), \quad \eta\left(\frac{\tau}{4}\right), \quad \eta\left(\frac{\tau+1}{4}\right), \quad \eta\left(\frac{\tau+2}{4}\right), \quad \eta\left(\frac{\tau+3}{4}\right)$
From A. Titov, talk at FLASY 2019

For, e.g., S_{4} the five independent modular forms of the weight 2 are decomposed into the 2 and 3^{\prime} irreducible representations of S_{4} :

$$
Y_{2}^{(2)}(\tau)=\binom{Y_{1}(\tau)}{Y_{2}(\tau)}, \quad Y_{3^{\prime}}^{(2)}(\tau)=\left(\begin{array}{c}
Y_{3}(\tau) \\
Y_{4}(\tau) \\
Y_{5}((\tau)
\end{array}\right) .
$$

J.T. Penedo, STP, arXiv:1806.11040
$Y_{i}(\tau)$ are expressed in terms of
$\eta^{\prime}(\tau+1 / 2) / \eta(\tau+1 / 2), \eta^{\prime}(4 \tau) / \eta(4 \tau), \eta^{\prime}(\tau / 4) / \eta(\tau / 4), \eta^{\prime}((\tau+1) / 4) / \eta((\tau+1) / 4)$, $\eta^{\prime}((\tau+2) / 4) / \eta((\tau+2) / 4), \eta^{\prime}((\tau+3) / 4) / \eta((\tau+3) / 4)$.

The modular forms of higher weight transform according to certain irreps of S_{4}. The dimension of the linear space of mod. forms of weight k is $\operatorname{dim} \mathcal{M}_{k}(\Gamma(4))=2 k+1$. At weight 4 there are 9 independent modular forms transforming in the $1,2,3$ and 3^{\prime} irreps of S_{4} :

$$
\begin{array}{cc}
Y_{1}^{(4)}=Y_{1} Y_{2}, & Y_{2}^{(4)}=\binom{Y_{2}^{2}}{Y_{1}^{2}}, \\
Y_{3}^{(4)}=\left(\begin{array}{l}
Y_{1} Y_{4}-Y_{2} Y_{5} \\
Y_{1} Y_{5}-Y_{2} Y_{3} \\
Y_{1} Y_{3}-Y_{2} Y_{4}
\end{array}\right), & Y_{3^{\prime}}^{(4)}=\left(\begin{array}{l}
Y_{1} Y_{4}+Y_{2} Y_{5} \\
Y_{1} Y_{5}+Y_{2} Y_{3} \\
Y_{1} Y_{3}+Y_{2} Y_{4}
\end{array}\right) .
\end{array}
$$

J.T. Penedo, STP, arXiv:1806.11040

For the case of $N=4$ (i.e., S_{4}) we are going to consider further the weight 2 and the higher weight $k \leq 10$ modular multiplets have been computed in the basis of S and T generators employed in arXiv:1806.11040. In this basis the triplet irreps of S and T to be used in our analysis read:
$S= \pm \frac{1}{3}\left(\begin{array}{ccc}-1 & 2 \omega^{2} & 2 \omega \\ 2 \omega & 2 & -\omega^{2} \\ 2 \omega^{2} & -\omega & 2\end{array}\right), T= \pm \frac{1}{3}\left(\begin{array}{ccc}-1 & 2 \omega & 2 \omega^{2} \\ 2 \omega & 2 \omega^{2} & -1 \\ 2 \omega^{2} & -1 & 2 \omega\end{array}\right)$,
$\omega=e^{i 2 \pi \tau / 3}$. The plus (minus) corresponds to the irrep 3 (3') of S_{4}.
In the employed basis we have:

$$
S T=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \omega^{2} & 0 \\
0 & 0 & \omega
\end{array}\right) .
$$

In certain cases of $N=3,4,5$ (i.e., A_{4}, S_{4}, A_{5}) it proves convenient to work in basis in which the generators S and T of these groups are represented by symmetric matrices,

$$
\rho_{\mathrm{r}}(S)=\rho_{\mathrm{r}}^{T}(S), \quad \rho_{\mathrm{r}}(T)=\rho_{\mathrm{r}}^{T}(T)
$$

for all irreducible representations r.
The modular forms of levels $N=3,4,5$ and weights $k \leq 10$ in the symmetric bases for S and T can be found in P.P. Novichkov et al., arXiv:1905.11970. We will be interested in the finite modular group $\Gamma_{4} \simeq S_{4}$.

Lepton Flavour Models Based on S_{4} (Seesaw Models without Flavons)

We assume that neutrino masses originate from the (supersymmetric) type I seesaw mechanism. The superpotential in the lepton sector reads

$$
W=\alpha\left(E^{c} L H_{d} f_{E}(Y)\right)_{1}+g\left(N^{c} L H_{u} f_{N}(Y)\right)_{1}+\wedge\left(N^{c} N^{c} f_{M}(Y)\right)_{1},
$$

a sum over all independent invariant singlets with the coefficients $\alpha=$ $\left(\alpha, \alpha^{\prime}, \ldots\right), g=\left(g, g^{\prime}, \ldots\right)$ and $\wedge=\left(\wedge, \wedge^{\prime}, \ldots\right)$ is implied. $f_{E, N, M}(Y)$ denote the modular form multiplets required to ensure modular invariance.

For simplicity, we make the following assumptions:

- Higgs doublets H_{u} and H_{d} transform trivially under $\Gamma_{4}, \rho_{u}=\rho_{d} \sim 1$, and $k_{u}=k_{d}=0$;
- lepton $S U(2)$ doublets L_{1}, L_{2}, L_{3} furnish a 3-dim. irrep of Γ_{4}, i.e., $\rho_{L} \sim 3$ or 3^{\prime};
- neutral lepton gauge singlets $N_{1}^{c}, N_{2}^{c}, N_{3}^{c}$ transform as a triplet of Γ_{4}, $\rho_{N} \sim 3$ or 3^{\prime};
- charged lepton $S U(2)$ singlets $E_{1}^{c}, E_{2}^{c}, E_{3}^{c}$ transform as singlets of Γ_{4}, $\rho_{1,2,3} \sim \mathbf{1}, \mathbf{1}^{\prime}$.

With these assumptions, we can rewrite the superpotential as

$$
W=\sum_{i=1}^{3} \alpha_{i}\left(E_{i}^{c} L f_{E_{i}}(Y)\right)_{1} H_{d}+g\left(N^{c} L f_{N}(Y)\right)_{1} H_{u}+\wedge\left(N^{c} N^{c} f_{M}(Y)\right)_{1}
$$

Assigning weights $\left(-k_{i}\right),\left(-k_{L}\right),\left(-k_{N}\right)$ to E_{i}^{c}, L, N^{c}, and weights $k_{\alpha_{i}}, k_{g}, k_{\wedge}$ to the multiplets of modular forms $f_{E_{i}}(Y), f_{N}(Y), f_{M}(Y)$, modular invariance of the superpotential requires

$$
\left\{\begin{array} { l }
{ k _ { \alpha _ { i } } = k _ { i } + k _ { L } } \\
{ k _ { g } = k _ { N } + k _ { L } } \\
{ k _ { \Lambda } = 2 k _ { N } }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
k_{i}=k_{\alpha_{i}}-k_{g}+k_{\Lambda} / 2 \\
k_{L}=k_{g}-k_{\Lambda} / 2 \\
k_{N}=k_{\wedge} / 2
\end{array}\right.\right.
$$

By specifying the weights of the modular forms one obtains the weights of the matter superfields.
After modular symmetry breaking, the matrices of charged lepton and neutrino Yukawa couplings, λ and \mathcal{Y}, as well as the Majorana mass matrix M for heavy neutrinos, are generated:

$$
W=\lambda_{i j} E_{i}^{c} L_{j} H_{d}+\mathcal{Y}_{i j} N_{i}^{c} L_{j} H_{u}+\frac{1}{2} M_{i j} N_{i}^{c} N_{j}^{c},
$$

a sum over $i, j=1,2,3$ is assumed. After integrating out N^{c} and after EWS breaking, the charged lepton mass matrix M_{e} and the light neutrino Majorana mass matrix M_{ν} are generated (we work in the L-R convention for the charged lepton mass term and the R-L convention for the light and heavy neutrino Majorana mass terms):

$$
\begin{aligned}
& M_{e}=v_{d} \lambda^{\dagger}, \quad v_{d} \equiv H_{d}^{0}, \\
& M_{\nu}=-v_{u}^{2} \mathcal{Y}^{T} M^{-1} \mathcal{Y}, \quad v_{u} \equiv H_{u}^{0} .
\end{aligned}
$$

The Majorana mass term for heavy neutrinos

Assume $k_{\wedge}=0$, i.e., no non-trivial modular forms are present in $\wedge\left(N^{c} N^{c} f_{M}(Y)\right)_{1}, k_{N}=0$, and for both $\rho_{N} \sim 3$ or $\rho_{N} \sim 3^{\prime}$

$$
\left(N^{c} N^{c}\right)_{1}=N_{1}^{c} N_{1}^{c}+N_{2}^{c} N_{3}^{c}+N_{3}^{c} N_{2}^{c},
$$

leading to the following mass matrix for heavy neutrinos:

$$
M=2 \wedge\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right), \quad \text { for } \quad k_{\wedge}=0
$$

The spectrum of heavy neutrino masses is degenerate; the only free parameter is the overall scale \wedge, which can be rendered real. The Majorana mass term conserves a "non-standard" lepton charge and two of the three heavy Majorana neutrinos with definite mass form a Dirac pair.
C.N. Leung, STP, 1983

The neutrino Yukawa couplings

The lowest non-trivial weight, $k_{g}=2$, leads to

$$
g\left(N^{c} L Y_{2}\right)_{1} H_{u}+g^{\prime}\left(N^{c} L Y_{3^{\prime}}\right)_{1} H_{u} .
$$

There are 4 possible assignments of ρ_{N} and ρ_{L} we consider. Two of them, namely $\rho_{N}=\rho_{L} \sim 3$ and $\rho_{N}=\rho_{L} \sim 3^{\prime}$ give the following form of \mathcal{Y} :
$\mathcal{Y}=g\left[\left(\begin{array}{ccc}0 & Y_{1} & Y_{2} \\ Y_{1} & Y_{2} & 0 \\ Y_{2} & 0 & Y_{1}\end{array}\right)+\frac{g^{\prime}}{g}\left(\begin{array}{ccc}0 & Y_{5} & -Y_{4} \\ -Y_{5} & 0 & Y_{3} \\ Y_{4} & -Y_{3} & 0\end{array}\right)\right], \quad$ for $k_{g}=2$ and $\rho_{N}=\rho_{L}$.
The two remaining combinations, $\left(\rho_{N}, \rho_{L}\right) \sim\left(3,3^{\prime}\right)$ and ($3^{\prime}, 3$), lead to:
$\mathcal{Y}=g\left[\left(\begin{array}{ccc}0 & -Y_{1} & Y_{2} \\ -Y_{1} & Y_{2} & 0 \\ Y_{2} & 0 & -Y_{1}\end{array}\right)+\frac{g^{\prime}}{g}\left(\begin{array}{ccc}2 Y_{3} & -Y_{5} & -Y_{4} \\ -Y_{5} & 2 Y_{4} & -Y_{3} \\ -Y_{4} & -Y_{3} & 2 Y_{5}\end{array}\right)\right], \quad$ for $\quad k_{g}=2$ and $\rho_{N} \neq \rho_{L}$.
In both cases, up to an overall factor, the matrix \mathcal{Y} depends on one complex parameter g^{\prime} / g and the VEV τ.

The charged lepton Yukawa couplings

Since we consider $\rho_{i} \sim 1$ or 1^{\prime} and $\rho_{L} \sim 3$ or 3^{\prime}, we have four possible combinations $\rho_{i} \otimes \rho_{L}$. None of them contain the invariant singlet. Thus, the weights $k_{\alpha_{i}}$ cannot be zero, i.e., they are strictly positive, $k_{\alpha_{i}}>0$. Moreover, $f_{E_{i}}(Y)$ should transform in 3 if $\left(\rho_{i}, \rho_{L}\right) \sim(1,3)$ or ($\left.1^{\prime}, 3^{\prime}\right)$, and in 3^{\prime} if $\left(\rho_{i}, \rho_{L}\right) \sim\left(1,3^{\prime}\right)$ or ($1^{\prime}, 3$). Thus, for each $i=1,2$, 3 , we have
$\alpha_{i}\left(E_{i}^{c} L f_{E_{i}}(Y)\right)_{1} H_{d}=E_{i}^{c} \sum_{a} \alpha_{i, a}\left[L_{1}\left(Y_{a}^{\left(k_{c_{i}}\right)}\right)_{1}+L_{2}\left(Y_{a}^{\left(k_{c_{i}}\right)}\right)_{3}+L_{3}\left(Y_{a}^{\left(k_{c_{i}}\right)}\right)_{2}\right] H_{d}$,
where $Y_{a}^{\left(k_{a_{i}}\right)}$ are independent triplets (3 or 3^{\prime} depending on ρ_{i} and ρ_{L}) of weight $k_{\alpha_{i}}$. $\quad k_{\alpha_{i}}=2, i=1,2,3$ or $i=1,2$ is not phenomenologically viable (leads to two or one zero mass charged leptons). The minimal (in terms of weights) viable possibility is defined by $k_{\alpha_{i}}=2$ and $k_{\alpha_{j}}=k_{\alpha_{p}}=4$, for $j \neq p$, with $\rho_{j} \neq \rho_{p}$. Possible since there are two triplets of weight $4, Y_{3}^{(4)}$ and $Y_{3^{\prime}}^{(4)}$.

Then the relevant part of W, W_{e}, can take 6 different forms which lead to the same matrix U_{e} diagonalising $M_{e} M_{e}^{\dagger}=v_{d}^{2} \lambda^{\dagger} \lambda$, and thus do not lead to new results for the PMNS matrix. We give just one of these 6 forms corresponding to $\rho_{L}=3, \rho_{1}=1^{\prime}, \rho_{2}=1, \rho_{3}=1^{\prime}$:

$$
\alpha\left(E_{1}^{c} L Y_{3^{\prime}}\right)_{1} H_{d}+\beta\left(E_{2}^{c} L Y_{3}^{(4)}\right)_{1} H_{d}+\gamma\left(E_{3}^{c} L Y_{3^{\prime}}^{(4)}\right)_{1} H_{d} .
$$

This leads leads to

$$
\lambda=\left(\begin{array}{ccc}
\alpha Y_{3} & \alpha Y_{5} & \alpha Y_{4} \\
\beta\left(Y_{1} Y_{4}-Y_{2} Y_{5}\right) & \beta\left(Y_{1} Y_{3}-Y_{2} Y_{4}\right) & \beta\left(Y_{1} Y_{5}-Y_{2} Y_{3}\right) \\
\gamma\left(Y_{1} Y_{4}+Y_{2} Y_{5}\right) & \gamma\left(Y_{1} Y_{3}+Y_{2} Y_{4}\right) & \gamma\left(Y_{1} Y_{5}+Y_{2} Y_{3}\right)
\end{array}\right),
$$

In this "minimal" example the matrix λ depends on 3 free parameters, α, β and γ, which can be rendered real by re-phasing of the charged lepton fields, and the complex τ.

We recall that

$$
\begin{aligned}
& M_{e}=v_{d} \lambda^{\dagger}, \quad v_{d} \equiv H_{d}^{0}, \\
& M_{\nu}=-v_{u}^{2} \mathcal{Y}^{T} M^{-1} \mathcal{Y}, \quad v_{u} \equiv H_{u}^{0} .
\end{aligned}
$$

Parameters of the model: $\alpha, \beta, \gamma, g^{2} / \wedge-$ real; g^{\prime} and VEV of τ - complex, i.e., 6 real parametsers +2 phases for description of 12 observables (3 charged lepton masses, 3 neutrino masses, 3 mixing angles and 3 CPV phases). Excellent description of the data is obtained also for real g^{\prime} (i.e., 6 real parameters +1 phase).

The 3 real parameters $v_{d} \alpha, \beta / \alpha, \gamma / \alpha-$ fixed by fitting m_{e}, m_{μ} and m_{τ}. The remaining 3 real parameters and 2 (1) phases $-v_{u}^{2} g^{2} / \wedge,\left|g^{\prime} / g\right|,|\tau|$ and $\arg \left(g^{\prime} / g\right), \arg \tau(\arg \tau)-$ describe the 9ν observables, 3ν masses, 3 mixing angles and 3 CPV phases.

The model considered leads to testable predictions for $\min \left(m_{j}\right)\left(\sum_{i} m_{i}\right)$, type of the ν mass spectrum (NO or IO), the CPV Dirac and Majorana phases, $|\langle m\rangle|, \theta_{23}$, as well as of correlations between different observables.

Numerical Analysis

Each model depends on a set of dimensionless parameters

$$
p_{i}=\left(\tau, \beta / \alpha, \gamma / \alpha, g^{\prime} / g, \ldots, \wedge^{\prime} / \wedge, \ldots\right)
$$

which determine dimensionless observables (mass ratios, mixing angles and phases), and two overall mass scales: $v_{d} \alpha$ for M_{e} and $v_{u}^{2} g^{2} / \Lambda$ for M_{ν}. Phenomenologically viable models are those that lead to values of observables which are in close agreement with the experimental results summarised in the Table below. We assume also to be in a regime in which the running of neutrino parameters is negligible.

Observable	Best fit value and 1σ range	
m_{e} / m_{μ}	0.0048 ± 0.0002	
m_{μ} / m_{τ}	0.0565 ± 0.0045	
	NO	IO
$\delta m^{2} /\left(10^{-5} \mathbf{e V}^{2}\right)$	$7.34_{-0.14}^{+0.17}$	
$\left\|\Delta m^{2}\right\| /\left(10^{-3} \mathbf{e V}^{2}\right)$	$2.455_{-0.032}^{+0.035}$	$2.441_{-0.035}^{+0.033}$
$r \equiv \delta m^{2} /\left\|\Delta m^{2}\right\|$	0.0299 ± 0.0008	0.0301 ± 0.0008
$\sin ^{2} \theta_{12}$	$0.304_{-0.014}^{+0.013}$	$0.303_{-0.014}^{+0.014}$
$\sin ^{2} \theta_{13}$	$0.0214_{-0.0009}^{+0.0009}$	$0.0218_{-0.0008}^{+0.0008}$
$\sin ^{2} \theta_{23}$	$0.551_{-0.070}^{+0.019}$	$0.557_{-0.024}^{+0.017}$
δ / π	$1.32_{-0.23}^{+0.23}$	$1.52_{-0.15}^{+0.14}$

Best fit values and 1σ ranges for neutrino oscillation parameters, obtained in the global analysis of F. Capozzi et al., arXiv:1804.09678, and for charged-lepton mass ratios, given at the scale $2 \times 10^{16} \mathrm{GeV}$ with the $\tan \beta$ averaging described in F . Feruglio, arXiv:1706.08749 obtained from G.G. Ross and M. Serna, arXiv:0704.1248. The parameters entering the definition of r are $\delta m^{2} \equiv m_{2}^{2}-m_{1}^{2}$ and $\Delta m^{2} \equiv m_{3}^{2}-\left(m_{1}^{2}+m_{2}^{2}\right) / 2$. The best fit value and 1σ range of δ did not drive the numerical searches here reported.

P.P. Novichkov, J.T. Penedo, STP, A.V. Titov, arXiv:1811.04933

	Best fit value	2σ range	3σ range
$\operatorname{Re} \tau$	± 0.1045	$\pm(0.09597-0.1101)$	\pm (0.09378-0.1128)
$\operatorname{Im} \tau$	1.01	1.006-1.018	$1.004-1.018$
β / α	9.465	$8.247-11.14$	7.693-12.39
γ / α	0.002205	$0.002032-0.002382$	$0.001941-0.002472$
$\operatorname{Re} g^{\prime} / g$	0.233	-0.02383-0.387	-0.02544-0.4417
Im g^{\prime} / g	± 0.4924	$\pm(-0.592-0.5587)$	\pm (-0.6046-0.5751)
$v_{d} \alpha$ [MeV]	53.19		
$v_{u}^{2} g^{2} / \wedge[\mathrm{eV}]$	0.00933		
m_{e} / m_{μ}	0.004802	$0.004418-0.005178$	$0.00422-0.005383$
m_{μ} / m_{τ}	0.0565	0.048-0.06494	$0.04317-0.06961$
r	0.02989	$0.02836-0.03148$	$0.02759-0.03224$
$\delta m^{2}\left[10^{-5} \mathrm{eV}^{2}\right]$	7.339	7.074-7.596	$6.935-7.712$
$\left\|\Delta m^{2}\right\|\left[10^{-3} \mathbf{e V}^{2}\right]$	2.455	$2.413-2.494$	$2.392-2.513$
$\sin ^{2} \theta_{12}$	0.305	$0.2795-0.3313$	$0.2656-0.3449$
$\sin ^{2} \theta_{13}$	0.02125	0.01988-0.02298	$0.01912-0.02383$
$\sin ^{2} \theta_{23}$	0.551	$0.4846-0.5846$	$0.4838-0.5999$
Ordering	NO		
m_{1} [eV]	0.01746	0.01196-0.02045	$0.01185-0.02143$
m_{2} [eV]	0.01945	$0.01477-0.02216$	$0.01473-0.02307$
m_{3} [eV]	0.05288	$0.05099-0.05405$	0.05075-0.05452
$\sum_{i} m_{i}[\mathrm{eV}]$	0.0898	$0.07774-0.09661$	$0.07735-0.09887$
$\|\langle m\rangle\|$ [$\mathbf{e V}$]	0.01699	$0.01188-0.01917$	$0.01177-0.02002$
δ / π	± 1.314	$\pm(1.266-1.95)$	$\pm(1.249-1.961)$
$\alpha_{21 / \pi}$	± 0.302	$\pm(0.2821-0.3612)$	$\pm(0.2748-0.3708)$
α_{31} / π	± 0.8716	$\pm(0.8162-1.617)$	$\pm(0.7973-1.635)$
$N \sigma$	0.02005		

Best fit values along with 2σ and 3σ ranges of the parameters and observables in cases A and \mathbf{A}^{*}, (which refer to $\left(k_{\wedge}, k_{g}\right)=(0,2)$ and $\left.\tau= \pm 0.1045+i 1.01\right)$.

[^3]

Best fit values along with 2σ and 3σ ranges of the parameters and observables in cases \mathbf{B} and \mathbf{B}^{*}, (which refer to $\left(k_{\wedge}, k_{g}\right)=(0,2)$ and $\left.\tau= \pm 0.109+i 1.005\right)$.

	Best fit value	2σ range	3σ range
$\operatorname{Re} \tau$	∓ 0.1435	$\mp(0.137-0.1615)$	$\mp(0.1222-0.168)$
$\operatorname{Im} \tau$	1.523	$1.147-1.572$	1.088-1.594
β / α	17.82	$10.99-21.38$	9.32-23.66
γ / α	0.003243	$0.002518-0.003565$	$0.00227-0.003733$
$\operatorname{Re} g^{\prime} / g$	-0.8714	-(0.8209-1.132)	-(0.7956-1.148)
$\operatorname{Im} g^{\prime} / g$	∓ 2.094	$\mp(1.439-2.157)$	$\mp(1.409-2.182)$
$v_{d} \alpha$ [MeV]	71.26		
$v_{u}^{2} g^{2} / \wedge[\mathrm{eV}]$	0.008173		
m_{e} / m_{μ}	0.004797	$0.00442-0.005183$	$0.004215-0.005378$
m_{μ} / m_{τ}	0.05655	$0.04806-0.06507$	$0.04348-0.0698$
r	0.0301	$0.02857-0.03162$	$0.0278-0.03246$
$\delta m^{2}\left[10^{-5} \mathbf{e V}^{2}\right]$	7.346	7.084-7.589	6.946-7.717
$\left\|\Delta m^{2}\right\|\left[10^{-3} \mathrm{eV}^{2}\right]$	2.44	$2.4-2.479$	$2.377-2.498$
$\sin ^{2} \theta_{12}$	0.303	$0.278-0.3288$	$0.2657-0.3436$
$\sin ^{2} \theta_{13}$	0.02175	$0.02035-0.0234$	$0.01957-0.0242$
$\sin ^{2} \theta_{23}$	0.5571	0.4905-0.588	$0.4551-0.6026$
Ordering	IO		
m_{1} [eV]	0.0513	0.04938-0.0518	0.04882-0.05207
m_{2} [eV]	0.05201	$0.05012-0.05248$	$0.04958-0.05274$
m_{3} [eV]	0.01512	$0.00576-0.01594$	$0.00316-0.0163$
$\sum_{i} m_{i}[\mathrm{eV}]$	0.1184	$0.1053-0.1201$	0.102-0.1208
$\|\langle m\rangle\|[\mathrm{eV}]$	0.0263	$0.0239-0.04266$	0.02288-0.04551
δ / π	± 1.098	$\pm(1.026-1.278)$	\pm (0.98-1.289)
$\alpha_{21 / \pi}$	± 1.241	$\pm(1.162-1.651)$	\pm (1.113-1.758)
α_{31} / π	± 0.2487	\pm (0.1474-0.3168)	$\pm(0.069-0.346)$
$N \sigma$	0.0357		

Best fit values along with 2σ and 3σ ranges of the parameters and observables in cases C and C^{*}, (which refer to $\left(k_{\wedge}, k_{g}\right)=(0,2)$ and $\left.\tau= \pm 0.1453+i 1.523\right)$.

	Best fit value	2σ range	3σ range
$\operatorname{Re} \tau$	± 0.179	$\pm(0.165-0.1963)$	\pm (0.1589-0.199)
$\operatorname{Im} \tau$	1.397	1.262-1.496	1.236-1.529
β / α	15.35	$11.67-18.66$	10.79-21.09
γ / α	0.002924	$0.002582-0.003289$	$0.002443-0.003459$
$\operatorname{Re} g^{\prime} / g$	-1.32	-(1.189-1.438)	-(1.131-1.447)
$\operatorname{Im} g^{\prime} / g$	± 1.733	$\pm(1.357-1.948)$	$\pm(1.306-2.017)$
$v_{d} \alpha$ [MeV]	68.42		
$v_{u}^{2} g^{2} / \wedge[\mathrm{eV}]$	0.00893		
m_{e} / m_{μ}	0.004786	$0.004431-0.005186$	0.004221-0.005386
m_{μ} / m_{τ}	0.0554	$0.0481-0.06502$	$0.04343-0.06968$
r	0.03023	$0.02859-0.03163$	$0.02775-0.03244$
$\delta m^{2}\left[10^{-5} \mathbf{e V}^{2}\right]$	7.367	7.088-7.59	$6.937-7.713$
$\left\|\Delta m^{2}\right\|\left[10^{-3} \mathrm{eV}^{2}\right]$	2.437	$2.4-2.479$	$2.378-2.499$
$\sin ^{2} \theta_{12}$	0.3031	$0.2791-0.3286$	$0.2657-0.3436$
$\sin ^{2} \theta_{13}$	0.02184	0.02038-0.02337	$0.01954-0.0242$
$\sin ^{2} \theta_{23}$	0.5577	$0.5509-0.5869$	0.5482-0.6013
Ordering	IO		
m_{1} [eV]	0.05122	$0.05051-0.05185$	$0.05023-0.05212$
m_{2} [eV]	0.05193	$0.05125-0.05253$	$0.05098-0.05279$
m_{3} [eV]	0.01495	$0.01293-0.01613$	$0.01223-0.01649$
$\sum_{i} m_{i}[\mathrm{eV}]$	0.1181	$0.1149-0.1203$	$0.1139-0.1212$
$\|\langle m\rangle\|$ [eV]	0.03104	0.02666-0.03597	0.02515-0.03677
δ / π	± 1.384	$\pm(1.32-1.4245)$	$\pm(1.271-1.437)$
α_{21} / π	± 1.343	$\pm(1.227-1.457)$	$\pm(1.171-1.479)$
α_{31} / π	± 0.806	\pm (0.561-1.092)	\pm (0.448-1.149)
$N \sigma$	0.3811		

Best fit values along with 2σ and 3σ ranges of the parameters and observables in cases \mathbf{D} and \mathbf{D}^{*}, (which refer to $\left(k_{\wedge}, k_{g}\right)=(0,2)$ and $\left.\tau= \pm 0.179+i 1.397\right)$.

[^4]| | Best fit value | 3σ range |
| :---: | :---: | :---: |
| $\operatorname{Re} \tau$ | ∓ 0.4996 | $\mp(0.48-0.5084)$ |
| $\operatorname{Im} \tau$ | $\mathbf{1 . 3 0 9}$ | $1.246-1.385$ |
| β / α | $\mathbf{0 . 0 0 0 2 4 3}$ | $0.0002004-0.0002864$ |
| γ / α | 0.03335 | $0.02799-0.03926$ |
| $\mathrm{Re} g^{\prime} / g$ | -0.06454 | $-(0.01697-0.1215)$ |
| $\mathrm{Im} g^{\prime} / g$ | ∓ 0.569 | $\mp(0.4572-0.6564)$ |
| $v_{d} \alpha[\mathrm{MeV}]$ | $\mathbf{1 1 2 5}$ | |
| $v_{u}^{2} g^{2} / \wedge[\mathrm{eV}]$ | 0.0174 | |
| m_{e} / m_{μ} | $\mathbf{0 . 0 0 4 7 9 7}$ | $0.004393-0.005197$ |
| m_{μ} / m_{τ} | 0.05626 | $0.04741-0.0654$ |
| r | 0.02985 | $0.02826-0.03146$ |
| $\delta m^{2}\left[10^{-5} \mathrm{eV}^{2}\right]$ | 7.332 | $7.055-7.593$ |
| $\left\|\Delta m^{2}\right\|\left[10^{-3} \mathrm{eV}^{2}\right]$ | 2.456 | $2.413-2.497$ |
| $\sin ^{2} \theta_{12}$ | 0.311 | $0.2895-0.3375$ |
| $\sin ^{2} \theta_{13}$ | 0.02185 | $0.02041-0.02351$ |
| $\sin ^{2} \theta_{23}$ | 0.4469 | $0.43-0.4614$ |
| $\mathrm{Ordering}^{2}$ | NOO | |
| $m_{1}[\mathrm{eV}]$ | 0.01774 | $0.01703-0.01837$ |
| $m_{2}[\mathrm{eV}]$ | 0.0197 | $0.01906-0.02025$ |
| $m_{3}[\mathrm{eV}]$ | 0.05299 | $0.05251-0.05346$ |
| $\sum_{i} m_{i}[\mathrm{eV}]$ | 0.09043 | $0.08874-0.09195$ |
| $\|\langle m\rangle\|[\mathrm{eV}]$ | 0.006967 | $0.006482-0.007288$ |
| δ / π | ± 1.601 | $\pm(1.287-1.828)$ |
| α_{21} / π | ± 1.093 | $\pm(0.8593-1.178)$ |
| $\alpha 31 / \pi$ | ± 0.7363 | $\pm(0.3334-0.9643)$ |
| $N \sigma$ | 2.147 | |

Best fit values along with 2σ and 3σ ranges of the parameters and observables in cases E and E^{*}, (which refer to $\left(k_{\wedge}, k_{g}\right)=(0,2)$ and $\left.\tau= \pm 0.4996+i 1.309\right)$.

[^5]
P.P. Novichkov et al., arXiv:1811.04933

Literature overview

Bottom-up approach in the lepton sector

40 papers have appeared since the seminal 1706.08749
(as of 11 December 2019)
J. Penedo, talk at SISSA, 11/12/2019

Literature overview

Bottom-up approach in the lepton sector (cont.)
-Models with and without flavons

- Neutrino mass origin: Weinberg, Seesaw (I, II, inverse), Dirac, 1 or 2 loops
-Dark matter, leptogenesis, texture zeros, 2RHN, ...

Bottom-up approach for quarks and quarks+leptons

```
\(\Gamma_{2} \simeq S_{3}\)
\(\Gamma_{3} \simeq A_{4}\)\(\left\{\begin{array}{l}1812.09677 \text { - just quarks, with Higgs triplets } \\ 1812.11072 \text { - no unification, a modular symmetry for each sector } \\ \begin{array}{l}1905.13421-\text { both sectors fit with one tau } \\ 1906.10341-\operatorname{SU}(5) \text { GUT with a very large number of parameters }\end{array}\end{array}\right.\)
```

J. Penedo, talk at SISSA, 11/12/2019

Literature overview

Generalisations of the bottom-up approach

- Mass hierarchies using flavons and weights as FN charges [1908.11867]
-Multiple modular symmetries [1906.02208, 1908.02770]
-Tentative studies of modulus stabilisation [1909.05139, 1910.11553]
-Odd weight modular forms: $\operatorname{PSL}(2, Z) \rightarrow \mathrm{SL}(2, Z)$ [1907.01488]
-Addition of a generalised CP symmetry [1905.11970, 1910.11553]
J. Penedo, talk at SISSA, 11/12/2019

Colleagues working in this field
F. Feruglio et al.;
P. Nilles, A. Baur, S. Ramos-Sanchez, A. Trautner, P.K.S. Vaudrevange;
M. Tanimoto, H.Okada, Y.Shimizu, T.H. Tatsuishi et al.;
T. Kobayashi et al.;
S.F. King, Ye-Ling Zhou et al.;
G.-J. Ding, Xiang-Gan Liu et al.;
M.-C. Chen, M. Ratz et al.;

SISSA related group: P. Novichkov, J. Penedo, STP, A.V. Titov;
Et. al. play important role in these studies.

Conclusions.

- Understanding the origin of the pattern of neutrino mixing and of neutrino mass squared differences that emerged from the neutrino oscillation data in the recent years is one of the most challenging problems in neutrino physics. It is part of the fundamental problem of understanding the origin of flavour in particle physics.
- The modular invariance (finite modular group symmetries) is a new elegant and promising approach to the flavour problem. It has been successfully applied to the lepton flavour problem. First encouring attempts are made to treat both the quark and lepton flavour problems (see, e.g., H. Okada, M. Tanimoto, arXiv:2005.00775).
- In its minimal version the approach involves just one complex scalar field - the modulus τ, and a certain rather small number of constant parameters. The modular symmetry is broken by the the VEV of τ.
- The models of lepton flavour based of finite modular symmetries, lead to testable predictions for $\min \left(m_{j}\right)$, type of the neutrino mass spectrum (NO or IO), $\sum_{i} m_{i}$, the CPV Dirac and Majorana phases, $|\langle m\rangle|, \theta_{23}$, as well as of correlations between different observables.
- The modular invariance approach to the flavour problem is still at the early stage of its development, with many aspects still to be understood.

[^6]
[^0]: S.T. Petcov, RECONNECT, 26/05/2020

[^1]: S.T. Petcov, RECONNECT, 26/05/2020

[^2]: S.T. Petcov, RECONNECT, 26/05/2020

[^3]: S.T. Petcov, RECONNECT, 26/05/2020

[^4]: S.T. Petcov, RECONNECT, 26/05/2020

[^5]: S.T. Petcov, RECONNECT, 26/05/2020

[^6]: S.T. Petcov, RECONNECT, 26/05/2020

