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With quantum computers,
we will tackle problems in new ways

Model physical Find better Obtain better
processes patterns within optimization
of nature AI/ML processes solutions
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Perform significantly
more scenario

simulations
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Start thinking about
gquantum computing now

It’s moving fast Talent is scarce Patents are being Strategizing takes
filed time
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[BM Is defining the future

of computing, again

Most advanced
hardware supporting
the full stack

14 systems
53 qubit system
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ibm.co/qg-experience
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Trusted advisor with
the broadest adoption

180k+ users
100B+ executions
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giskit.ozrg

Built the network
of experts defining the
future together

80+ partners
200+ papers
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The tuture belongs
to all of us

Giving students hands-
on experience through
Internships

Offering open-access
educational materials

community.qgiskit.org/education

Michele Grossi




IBM Quantum

The motivation for quantum computing
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The future
of computing

Mathematics + Information
Today’s computers and HPC

Intelligent
Applications
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Hybrid Cloud
Secure heterogeneous computational fabric

Biology + Information
Al Systems

bits neurons

qubits

Intelligent Automation
Automated programming and Al

Physics + Information
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“I’'m not happy with all the analyses
that go with just the classical
theory, because nature isn’t
classical, dammit, and if you want
to make a simulation of nature,
you’d better make it quantum
mechanical ...”

Richard P. Feynman
Department of Physics,
California Institute of Technology

International Journal of Theoretical Physics,
Vol 21, Nos. 6/7, 1982
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Bits and qubits

A can be 0 or 1.

A , Or , can take
on those values but can represent
a combination of 0 and 1 while
we are computing.

When we measure a qubit, it
becomes 0 or 1 based on
probability.

Michele Grossi
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classical bit guantum bit analogy

11



Quantum computing
uses essential ideas
from quantum
mechanics

Measurement

Michele Grossi

Measurement is forcing the qubit’s state IBM Quantum

to |0> or |1> by observing it, where
is the probability we will get |0> when we measure
is the probability we will get |1> when we measure
Examples
2 10> + V2 11>
2 2
has an equal probability of becoming |0> or |1>.
RTINS TN
2 2
has a 75% chance of becoming |0>.
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Quantum computing
uses essential ideas
from quantum
mechanics

Gates / Operations

and

Michele Grossi

IBM Quantum
Classical logical circuits use operations like , Or,
, , and xor. We also call these gates.

Quantum circuits use reversible gates that change
the quantum states of one, two , or more qubits.

qo: |0) H —lmo) =10) or [1)
q1: 10) H H —|mi) =10) or [1)
q2: 10) H H im2) = 10)

qo: [Y¥)o H H H‘L lmo) = Y
q1: [ AL H 4(L H lm1) = |¢¥)o
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The hardware in an IBM Q oM Quantum
quantum computing system
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IBM Q quantum devices

IBM’s 10 Quantum Device Lineup

Johannesburg Almaden Ourense
Poughkeepsie Boeblingen Valencia

Singapore Vigo

Melbourne Yorktown

Michele Grossi
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53 Qubit Rochester Device
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Quantum
volume

Many factors contribute to the
performance of the overall system

https://www.ibm.com/blogs/rese

arch/2020/01/quantum-volume-
32/
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IBM Q System One
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. T*vo »
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IBM Q Experience is
the quantum cloud services
and software platform
designed to take full

e advantage of IBM Q systems.



IBM Quantum

In collaboration with IBM Q Network partners we are
driving advancements in quantum software and algorithms

IBM research towards the first use cases with quantum advantage...
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Simulating Quantum Systems

l

Quantum chemistry
Material science

High energy physics

Michele Grossi
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Artificial Intelligence

|

Better model training
Pattern recognition
Fraud detection

Optimization / Monte Carlo
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Portfolio optimization

Risk analysis

Loans & credit scoring

Monte Carlo-like applications
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High Energy Physics

(machine learning and SVM),
select/identify relevant LHC events, reconstruction
of tracks - jets tracking

‘L Data 2011+ 2012
o i S;T—hgt_;s 2o ATLAS

E N H—ZZ*—4l

E m,=124.3 GeV (fit) '
35F \s=7TeV JLdt=461b

[ Background Z, 22* 8TeV JLdt=20.7 fb
[ I Background Zsjets, 8= 10y JLatee0.
30} W

W Syst.Unc.

Events/5 GeV

where Time-Evolution: lattice
gauge theory (Schwinger’s model and beyond)

i VQE optimization in lattice
gauge theory

E.A. Martinez et al., nature,
534,516 (2016)
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https://github.ibm.com/IBM-Q-General/quantum-grand-central/wiki/IBM-Quantum-Design-Practice
https://github.ibm.com/IBM-Q-General/quantum-grand-central/wiki/IBM-Quantum-Design-Practice
https://github.ibm.com/IBM-Q-General/quantum-grand-central/wiki/IBM-Quantum-Design-Practice
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Simulating lattice gauge theories on a quantum computer
''m Bvrnes* Yoshihisa Yamamoto

Quantum Computation of Scattering

in Scalar Quantum Field Theories 2 0 1 2

Stephen P. Jordan,” Keith S. M. Lee,’ and John Preskill

Atomic Quantum Simulation of [/(N) and SU(N) Non-Abelian Lattice Gauge Theories 2 0 1 3

D. Banerjee', M. Bogli', M. Dalmonte?, E. Rico*?, P. Stebler!, U.-J. Wiese', and P. Zoller**

2 O 1 4 Towards Quantum Simulating QCD

Uwe-Jens Wiese

Quantum Simulations of Lattice Gauge Theories
using Ultracold Atoms in Optical Lattices 2 0 1 5
Erez Zohar J. Ignacio Cirac Benni Reznik

Real-time dynamics of lattice gauge theories with a few-qubit quantum computer

2 0 1 6 Esteban A. Martinez,'* * Christine Muschik,% *: * Philipp Schindler,! Daniel Nigg,'! Alexander Erhard,! Markus

Heyl,** Philipp Hauke,* * Marcello Dalmonte,?® Thomas Monz,'! Peter Zoller,** and Rainer Blatt!:?
Quantum Sensors for the Generating Functional of Interacting Quantum Field Theories 2 0 1 7

A. Bermudez.'"*" G. Aants.' and M. Miiller’




Track Reconstruction — QUBO Algorithm IER LA LLL

Multi-step i ive Kal fil pproach Mapping of
ulti-step iterative Kalman filter abbroac . .
QUBO to Hamiltonian
renstion 241
Tracker 2 1- Set xl = T} for Zi S {_11 1}
2. Replacez; by ¢} and z;z; by 0} ® o}

where

andidate ) ‘ * 0_ _ (1 0 )
TN ,, Track findin z —
Silicon r‘w. ° 0 1
Detectors © 3
=» Combinatorial optimization problem

has beentranslated to ground state

.. m./.‘..‘o Q S
Nominal / b 1 \ S : . .
eracion 7 > | TRT Extension problem of Ham|lton.|an H as known
from quantum chemistry

min (Y|H )

Quadratic Unconstrained Binary Optimization QUBO lP)
Michele Grossi https://sites.google.com/lbl.gov/hep-qpr 22




Quantum Simulation

Represent the system Hilbert space on the qubit
space

Implement a circuit to simulate the time evolution
Field on a lattice
The field amplitude is discretized at every lattice site

Example: Schwinger model describes 2D
QED with a Dirac fermion

Even sites:

- toy QCD model: T
- Charge screening SRS,
- SSB

- confinement

Michele Grossi
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Quantum system

6(0)) = l¢(V)

Quantum simulator

\

4(0)) === Iy (1))

Evolution

Preparation Measurement

S. Lloyd, Science 273, 1073 (1996)

$* - quantum field theory
S. Jordan, et al., Science, 336, 1130 (2012)

SU(2) non-Abelian gauge field theory in one dimension on digital quantum computers

d Martin J. Savage!
n, Seattle, WA 98195-1550, USA
, 2019 - 0:44)




Quantum Computing for Final State Radiation AT

Final State Radiation (FSR) is a complex many-
body quantum system. Classic MC simulation
cannot capture all quantum effects.

Parton shower models are implemented using
classical Markov Chain MC (MCMC) algorithms to
efficiently generate high multiplicity radiation
patterns.

Perhaps quantum tools can be wused to
incorporate quantum degrees of freedom

Ref: 1904.03196 D.Provasoli, C. Bauer, W. de Jong

e Like the SM Higgs when g, ,~m/vand g; = g, =0

L =fi(@+mi)f1 + f2060 + m2) fa + (0,.0)*
Michele Gross + g1 f1f1o0+ g2fofod + gi2 [f1fo + fafi] ¢ .




Quantum Computing for FSR: algorithm

Particle state
Emission history Nlogy,(N +ny)]
Did emission happen? | 1

Number of bosons [logy(N + np)]

Number of £, [logy(N + ny)]

Number of [log,(N +ny)]

Michele Grossi por 1904.03196 D.Provasoli, C. Bauer, W. de Jong

IBM Quantum

The algorithm is able to keep track of amplitudes and not
probabilities, it samples from the full probability distribution in
polynomial time

Measurement: normalized differential cross section for log
Bmax and the number of emissions. Interference effects are
turned on (g12 = 1) and off (g12 = 0), where the classical
simulations/calculations are expected to agree with the
guantum simulations and measurements.

25




IBM Quantum
no interference
with interference
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Classical / Quantum

| = Analytical (g12 =0)

24 step simulation (g2 = 0)
E= 4 step simulation (g12 =0)
24 step simulation (g12 =1)
=1 4 step simulation (912 =1)
Y 4 steps IBMQ Tenerife (g12 =0)
A 4 steps IBMQ Tenerife (912 =1)
i 2 step sim. with ¢ - ff (g1, = 0)
[ 2 step sim. with ¢ > ff (g1 =1)

(91,92.€)=(2,1,1073)

1l/odo/dN

Classical / Quantum

X

X 24 step Classical MCMC
24 step simulation (g1, = 0)
E= 4 step simulation (g12 =0)
24 step simulation (g12 =1)
=1 4 step simulation (g1 =1)
Y 4 steps IBMQ Tenerife (g12 =0)
A 4 steps IBMQ Tenerife (912 =1)
i 2 step sim. with ¢ - ff (g1, =0)
[ 2 step sim. with ¢ > ff (g2 =1)

(91,92,8)=(2,1,1073)

4 6

109(Omax) Number of emissions (N)

angle of maximum emission number of emissions
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Quantum Generative Adversarial Networks

Use classical Generative Adversarial Networks to
simulate detector response .

. 0 [ L/ i
— Replace Monte Carlo simulation ’ g
Quantum GAN can have larger representational power »,

— Different hybrid classical-quantum algorithms for
generative models exist

OutD |10)

Train a quantum GAN to generate few-pixels image

BathD  [0)®

LabelD  [2)
Outr|G |0)®"
Label R|G |4)

BathR|G  |z)

M IC h e le G rossli Dallaire-Demers and Killoran, arxiv: 1804.08641



From Classics SVM to QSVM

Primal Problem

1
== ”WHZ al | k; (W q)(xl) +b)—1]

LET
minimize thls constraints

to maximize

Lagrange class labels
the margin

multipliers  {+1, -1}

Michele Grossi

IBM Quantum
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From Classics SVM to QSVM

Primal Problem

1
= ”WHZ al | k; (W q)(xl) +b)—1]

2
LET
minimize thls constraints

tOhmaX'm'Ze Lagrange class labels
the margin multipliers  {+1,—1}

Dual Problem is useful because dot products can
Be replaced by a function

IBM Quantum

29



IBM Quantum

Supervised learning with guantum enhanced
feature space

H
H

H

short-depth
circuit H

H

Measure in
canonical

basis
(T) . ."I—" < Sl —> |(T)(¥)><(T)(Q?)| U\b(_,:) = exp (I Z d)s(;‘l)

SCln]

Assign label
Michele Grossi

Havlicek, Corcoles, Temme, Harrow, Kandala, Chow, Gambetta, Nature vol. 567, 209-212 (2019)




Vector Boson Scattering IBM Quantum

* Unitarity at high energies requires presence of the SM Higgs
boson

« Sensitivity grows with energy of vector bosons

» Self-interaction of heavy gauge bosons

» Search for anomalous quartic-gauge-boson couplings

» The cross-section and angular distribution
of  longitudinal  polarisations  are

_ " —i0); e = - (p-.0,0,E) &l = lg(_'().l.i.())
particularly sensitive to beyond standard / m £
model (BSM) physics <> L z
« Boson polarisation can be measured as .
angular  distributions  of  particles

produced in the decay process

1 do

o dcost
Ref: M. Grossi et all in preparation 3

(W™ = IFv) = 2 fo sin 0 + ng(l t cosf)? + gfL(l r cosf)?



Vector Boson Scattering

________

—_— —— \———

C

Ref: M. Grossi et all in preparation

IBM Quantum

« Events with first solution closer to truth solution (1)
» Events with second solution closer to truth (0)

» Events with negative discriminant are discarded

—b+ Vb2 — 4ac

DvL = 2

32



Vector Boson Scattering — QSVM Flow
=S S 2
Variables
i
Feature Map
e §

Quantum
Machine
Learning

Given the current status of NISQ device we are limited in
the number of features to map for our problem. To reduce
the dimension of this space we apply the PCA analysis.
We need to find balance between number of PCA and total
variance explained

Ref: M. Grossi et all in preparation

IBM Quantum
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Vector Boson Scattering — QSVM Flow

g

///‘
/
10 ~
‘ PC1 PC2 PC3 PC4 PCS PC 6 PC7 PC 8 PC9 PC 10 PC 11

Given the current status of NISQ device we are limited in
the number of features to map for our problem. To reduce
the dimension of this space we apply the PCA analysis.
We need to find balance between number of PCA and total
variance explained

Ref: M. Grossi et all in preparation




Vector Boson Scattering — Angular Distribution

Transverse polarization Longitudinal polarization

k] 2
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=1 >
=2 =

-1.00 -0.75 -0.50 -0.25 0.00 0.25

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00
cos6

cos6

Ref: M. Grossi et all in preparation
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Thank you!

There is a long road ahead,
but quantum algorithms are
very promising for modelling
high energy scattering
processes.

Michele Grossi IBM Quantum



