Christoph Englert

Top views on BSM interactions

Top2022 Durham 05/09/22

LEVERHULME TRUST

Science and Technology Facilities Council

• top quark heavy $m_t - v$, strongly coupled, decay before hadronisation

$$\Gamma(t \to Wb) \sim (g^2 + y_t^2)^2 (g^2 - 2y_t^2)^2 \frac{v}{y_t^3}$$

top quark heavy $m_t \sim v$, strongly coupled, decay before hadronisation •

3

• top quark heavy $m_t - v$, strongly coupled, decay before hadronisation

• top quark heavy $m_t - v$, strongly coupled, decay before hadronisation

direct handle on properties

large pull @ weak scale

• top quark heavy $m_t - v$, strongly coupled, decay before hadronisation

direct handle on properties

large pull @ weak scale

relevant threshold

Higgs mass precisely predicted after determination m_t

• top quark heavy $m_t - v$, strongly coupled, decay before hadronisation

direct handle on properties

large pull @ weak scale

- Higgs mass precisely predicted after determination m_t
- Higgs $\gamma\gamma$ discovery mode is a direct window to fermion mass generation

• top quark heavy $m_t - v$, strongly coupled, decay before hadronisation

direct handle on properties

large pull @ weak scale

- Higgs mass precisely predicted after determination m_t
- Higgs $\gamma\gamma$ discovery mode is a direct window to fermion mass generation
- Weak scale physics sensitive to the interplay of bosons and split top

• top quark heavy $m_t - v$, strongly coupled, decay before hadronisation

direct handle on properties

large pull @ weak scale

- Higgs mass precisely predicted after determination m_t
- Higgs $\gamma\gamma$ discovery mode is a direct window to fermion mass generation
- Stability of weak scale directly related to the top quark

• top quark heavy $m_t - v$, strongly coupled, decay before hadronisation

What's next?

Phenomenological appeal

- abundantly produced
- rich final state phenomenology
- testbed for new strategies/tools

Top quark

```
Mind Map
```

Theoretical appeal

- central to weak scale dynamics
- crucial in BSM theories
- window to SM UV completions

What's next? Attempts discussed here!

Phenomenological appeal

- abundantly produced
- rich final state phenomenology
- testbed for new strategies/tools

Top quark

Theoretical appeal

- central to weak scale dynamics
- crucial in BSM theories
- window to SM UV completions

11:00	Searches for new physics with top quark final states	09:00	Top and flavour physics in the collider era (theory mini-workshop)

A general route to success?

To EFT...

theory

• correlations in particle physics, when perturbative, are parametrisable by Feynman diagrams

kinematic correlations

helicity correlations colour correlations

reverse-engineer in terms of collider observables for SM validation or exclusion

To (better?) EFT...

• Can we impart Feynman-graph correlations on measurements to enhance BSM sensitivity?

... Graph Neural Networks

jet tagging [Dreyer, Hu `20] anomaly detection [Atkinson et al. `21]

- nodes with features $[p_T, \eta, \phi, E, m, PID]$

edges for *feature correlation* e.g. *W* reconstructions vs four fermion discrimination

supervised training over graph structures to enhance BSM sensitivity

To (better?) EFT...

supervised training over graph structures to enhance BSM sensitivity

large improvement attainable
when BSM correlations affect
exclusive phasespace correlations

no improvement when inclusive selections determine sensitivity

expect additional improvements for UV-matched fits

	2.3 fb	o^{-1}	3 ab^{-1}		
	Individual	Profiled	Individual	Profiled	
\bar{C}_G	0.07%	14.12%	0.07%	11.09%	
$\bar{\gamma}_{\varphi q}^{(3)33}$	33.74%	34.19%	33.73%	33.48%	
$\overline{\gamma}_{uG}^{33}$	28.29%	32.18%	28.28%	30.74%	
$\overline{\nabla}^{33}_{uW}$	34.86%	35.35%	34.85%	35.53%	
= (8)33ii	4.71%	4.68%	4.71%	4.76%	
$\overline{\gamma}_{qq}^{(1)i33i}$	3.50%	3.45%	3.50%	4.73%	
$\overline{\gamma}_{qq}^{(3)i33i}$	4.35%	4.28%	4.35%	5.00%	
$\overline{\gamma}_{qq}(3)ii33$	63.83%	_	63.83%	71.91%	
$\sum_{qu} (8)33ii$	3.45%	3.51%	3.45%	3.48%	
$\bar{\gamma}_{qu}^{(8)ii33}$	3.74%	3.72%	3.74%	3.77%	
$\overline{\gamma}(8)33ii$	4.62%	4.46%	4.62%	4.79%	
$\overline{\nabla}_{uu}^{i33i}$	3.38%	3.35%	3.38%	1.95%	
¬(3) <i>ii</i> 33			10 57%	25 590%	

fractional improvement vs CMS-TOP-16-008

 top pair production with large cross section could fingerprint such ...
 States
 [Franzosi, Vryonidou, Zhang `17] [CE, Galler, White `19]

 EFT is suitable tool to constrain such states model-independently, matching is crucial.

18

matching is crucial.

...or not(?) to EFT...

• EFT is suitable tool to constrain such states model-independently, matching is crucial and so are expected uncertainties

...or not(?) to EFT...

• EFT is suitable tool to constrain such states model-independently, matching is crucial and so are expected uncertainties

Top caveats for light resonances

large interference effects of Higgs "signal" with QCD background

[Gaemers, Hoogeveen `84] [Dicus et al. `94]....

 top resonance searches in Higgs sector extensions with narrow width approximation inadequate!

Strong interaction alternatives?

Strong interactions?

Strong interactions?

[Brown et al. `20]

indirect top sector constraints

$$\mathcal{L} \supset \bar{t}\gamma^{\mu} \left[g_{L}^{t}P_{L} + g_{R}^{t}P_{R}\right] tZ_{\mu} \\ + \bar{b}\gamma^{\mu} \left[g_{L}^{b}P_{L} + g_{R}^{b}P_{R}\right] bZ_{\mu} \\ + \left(\bar{b}\gamma^{\mu} \left[V_{L}P_{L} + V_{R}P_{R}\right] tW_{\mu}^{+} + \text{h.c.}\right) \\ V_{L} = -\frac{g}{\sqrt{2}} \left[1 + \delta_{W,L}\right] \quad \text{etc.} \\ V_{L} \in \left[-0.029, 0.019\right], \quad \delta_{W,R} \in \left[-0.009, 0.009\right], \\ \delta_{Z,L} \in \left[-0.639, 0.277\right], \quad \delta_{Z,R}^{t} \in \left[-1.566, 1.350\right]. \\ \mathbf{W}_{L} \in \left[-0.025, 0.02\right], \quad \mathbf{w}_{L} \in \left[-0.0014, 0.0013\right], \\ \delta_{W,R} \in \left[-0.33, 0.37\right] \end{cases}$$

- existing direct top partner constraints in the range of $\gtrsim 1.5 \text{ TeV}$ compatible [Matsedonskyi, Panico, Wulzer `15]
- theoretical uncertainties is main sensitivity limitation, adding additional channels does not change this picture dramatically

Top Physics in 2022

• no new physics yet, but

• top physics occupies a major space in the electroweak landscape

resonant extension

elw. baryogenesis

 less ad-hoc descriptions of the weak scale crucially centre around extensions/modifications of the top quark sector

CP violation

- theoretical and experimental more resilient than ever
 - EFT vs full models vs uncertainties vs discovery sensitivity
 - new tools increase sensitivity often beyond naive extrapolations

Top Physics in 2022

• no new physics yet, but

• top physics occupies a major space in the electroweak landscape

resonant extension

elw. baryogenesis

 less ad-hoc descriptions of the weak scale crucially centre around extensions/modifications of the top quark sector

CP violation

- theoretical and experimental more resilient than ever
 - EFT vs full models vs uncertainties vs discovery sensitivity
 - new tools increase sensitivity often beyond naive extrapolations

Where's BSM?

33

Top Physics in 2022

• no new physics yet, but

• top physics occupies a major space in the electroweak landscape

resonant extension

elw. baryogenesis

CP violation

- less ad-hoc descriptions of the weak scale crucially centre around extensions/modifications of the top quark sector
- theoretical and experimental more resilient than ever
 - EFT vs full models vs uncertainties vs discovery sensitivity
 - new tools increase sensitivity often beyond naive extrapolations

Where's BSM? – Top physics might well hold the answer

...but there's more work to do.

top caveats

large interference effects of Higgs "signal" with QCD background

[Gaemers, Hoogeveen `84] [Dicus et al. `94]....

 top resonance searches in Higgs sector extensions with narrow width approximation is inadequate!

