

Universidad de Oviedo Universidá d'Uviéu University of Oviedo

Inclusive and differential single top cross sections

ALEJANDRO SOTO RODRÍGUEZ (ON BEHALF OF THE ATLAS AND CMS COLLABORATIONS)

2022/09/05

TOP 2022

Introduction

- Top quark production occurs in two different ways: Lat top pair (QCD) and **single top** (EW). 물
 - Single top quark production via Wtb vertex \rightarrow probe and measure V_{tb} .

 $\sigma_{t \text{ ch.}}(13 \text{ TeV}) = 217.0^{+6.6}_{-4.6}(\text{scale}) \pm 6.2(\text{PDF}, \alpha_S) \text{ pb}$ $\sigma_{s \text{ ch.}}(13 \text{ TeV}) = 10.32^{+0.29}_{-0.24}(\text{scale}) \pm 0.27(\text{PDF}, \alpha_S) \text{ pb}$ $\sigma_{tW \text{ ch.}}(13 \text{ TeV}) = 71.7 \pm 1.8(\text{scale}) \pm 3.4(\text{PDF}, \alpha_S) \text{ pb}$

Results presented in this talk

- **s-channel**: Measurement of single top-quark production in the s-channel in proton-proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector. <u>ATLAS-CONF-2022-030</u>
- **t-channel**: Measurement of CKM matrix elements in single top quark t-channel production in proton-proton collisions at $\sqrt{s} = 13$ TeV. <u>Phys. Lett. B 808 (2020) 135609</u>
- **t-channel**: Measurement of the polarisation of single top quarks and antiquarks produced in the t-channel at $\sqrt{s} = 13$ TeV and bounds on the tWb dipole operator from the ATLAS experiment. Sub. to JHEP, arXiv: 2202.11382
- **tW channel**: Measurement of inclusive and differential cross sections for single top quark production in association with a W boson in proton-proton collisions at $\sqrt{s} = 13$ TeV. Sub. to JHEP, arXiv: 2208.00924
- **tW channel**: Measurement of single top-quark production in association with a W boson in the single-lepton channel at $\sqrt{s} = 8$ TeV with the ATLAS detector. <u>Eur. Phys. J. C 81 (2021) 720</u>
- **tW channel**: Observation of tW production in the single-lepton channel in pp collisions at $\sqrt{s} = 13$ TeV. <u>JHEP 11 (2021) 111</u>

s-channel

- First 13 TeV measurement.
- Only observed at Tevatron (due to valence antiquarks).
- $\,\circ\,$ Main backgrounds: $t\bar{t}$ and W+jets (S/B \sim 3%).
- $t\bar{t}$ cross section grows steeper with \sqrt{s} compared to s-channel (~3/2).
- $\,\circ\,$ ATLAS at 8 TeV: 3.2(3.9) σ obs.(exp.).
 - Limited by data statistics, JER and t-channel generator choice.

Baseline event selection:

- $1 e/\mu$ (> 30 GeV). • p_T^{miss} > 35 GeV & $m_T(W)$ > 30 GeV.
- <u>Signal region (2j2b):</u>

• = 2 jets (> 30 GeV).

- Both jets b-tagged.
- Veto events with additional looser jets and leptons.

∘ <u>*tt*</u> VRs:</u> 3j2b, 2j2b.

• <u>W+jets VR:</u> 2j2b (with looser b-tagging WP)

Measurement of single top-quark production in the s-channel 13 TeV, 139 fb⁻¹, s-channel ATLAS-CONF-2022-030

- A discriminant *P*(*S*|*X*) based on matrix element calculations is used.
 - $\,\circ\,$ Good discrimination wrt. tt.

0

• Takes into account the detector resolution: transfer functions.

More details in Jacob Kempsters' talk!

Measurement of single top-quark production in the s-channel 13 TeV, 139 fb⁻¹, s-channel <u>ATLAS-CONF-2022-030</u>

Result:	
$\sigma_{\text{meas.}} = 8.2 \pm 0.6 \text{ (stat.)}_{-2.8}^{+3.4} \text{ (syst.) pb}$	
 Compatible with SM prediction: 	
NLO: $\sigma_{\text{pred.}} = 10.32^{+0.40}_{-0.36} \text{ pb}$ Hathor v2.1	
 <u>Significance</u>: 3.3(3.9)σ obs. (exp.) 	
Measurement dominated by systematic uncertainties	

0

Source	$\Delta\sigma/\sigma$ [%]
$t\bar{t}$ normalisation	+24/-17
Jet energy resolution	+18/-12
Jet energy scale	+18/-13
Other s-channel modelling sources	+18/-8
Top-quark processes ISR/FSR	+13/-11
MC statistics	+13/-11
Other $t\bar{t}$ shape modelling sources	+12/-10
Flavour tagging	+12/-10
W+jets normalisation	+11/-8
Top-quark processes PDFs	+10/-9
W+jets $\mu_{\rm R}/\mu_{\rm F}$ shape	+6/-5
Other processes normalisation	+6/-5
Pileup	+5/-3
Other t-channel modelling sources	± 5
Luminosity	+4/-3
Other tW modelling sources	+1/-2
Missing transverse energy	± 1
Multijet shape modelling	± 1
Other sources	< 1
Systematic uncertainties	+42/-34
Data statistics	± 8
Total	+42/-35

Measurement of CKM matrix elements 13 TeV, 35.9 fb⁻¹, t-channel

Phys. Lett. B 808 (2020) 135609

24 ⊨ ×10³

20

14 12 10

18 μ + 3j1t 16

Events / 0.07 units

Data / Fit

0.4

 $|V_{\rm tb}| > 0.970$

-0.4

Enriched in Cross section \times branching fraction Feynman diagram

1a

1b, 1c, 1d

1a

 $\sigma_{t-ch,b}\mathcal{B}(t \to Wb)$

 $\sigma_{t-ch,b}\mathcal{B}(t \to Wb)$

 $ST_{b,q}, ST_{q,b} \quad \sigma_{t-ch,b}\mathcal{B}(t \to Wq), \sigma_{t-ch,q}\mathcal{B}(t \to Wb)$

Category

 $ST_{b,b}$

 $ST_{\rm b,b}$

2j1t

3j1t

3j2t

- **Strategy**: ML fit on the 2j1t, 3j1t and 3j2t regions.
- MVAs (BDT) are trained for each region.

 $|V_{\rm td}|^2 + |V_{\rm ts}|^2 < 0.057.$

CMS

Data

Will Fit und

35.9 fb⁻¹ (13 TeV)

 $ST_{a,b} + ST_{b,a} (\times 1000)$

QCD

0.4 -0.3 -0.2 -0.1 0 0.1 Discriminator $ST_{b,a}$ vs. $ST_{b,b}$, tt, and W+jets

t, *s*-ch

ST hh

Polarisation measurement and bounds on the tWb dipole operator 13 TeV, 139 fb⁻¹, t-channel <u>Sub. to JHEP, arXiv: 2202.11382</u>

• Event selection:

- $1 e/\mu$ (> 30 GeV).
- $\circ~$ Forward jets included \rightarrow spectator jet.
- $\circ = 2$ jets, of which one must be b-tagged.
- $\circ p_{\mathrm{T}}^{\mathrm{miss}}$ > 35 GeV.
- Cuts to avoid multijet background on the $m_{\rm T}(l, p_{\rm T}^{\rm miss})$ and $p_{\rm T}(l)$.
- **First aim**: polarisation vector of single top/antitop quarks.
 - The direction of the charged lepton in the top quark rest frame is obtained $(\cos \theta_{li'})$.
 - $\circ z'$ along spectator quark direction.
 - Events classified in octants (Q).
 - A fit using the quark (Q₊) and antiquark (Q₋) variables, and 4 control region bins (for tt and W+jets) is done.
 - Result compatible with the prediction at NNLO <u>JHEP 11 (2017) 158</u>.

10

Polarisation measurement and bounds on the tWb dipole operator 13 TeV, 139 fb⁻¹, t-channel <u>Sub. to JHEP, arXiv: 2202.11382</u>

- Second aim: differential cross section of angular observables.
 - Distributions unfolded to the particle level.
 - Binning is optimised to get a stable unfolding.
 - Result in agreement with predictions at NLO & LO QCD from generators interfaced with Pythia8 and Herwig7.

• **Third aim**: establish bounds on the tWb dipole operator:

Details in Jon Wilson's talk!

tW-channel

Inclusive and differential measurement of tW production (dileptonic channel) 13 TeV, 138 fb⁻¹, tW process Sub. to JHEP, arXiv: 2208.00924

- The tW process **interferes** with $t\bar{t}$ at NLO in QCD.
- **DR** scheme is used. 0
- Difference with respect to DS \rightarrow uncertainty.
- **Event selection**: 0
 - $1e^{\pm} + 1\mu^{\mp}$.
 - Leading lepton $p_T > 25$ GeV.
 - $m(e^{\pm}, \mu^{\mp}) > 20 \text{ GeV}.$
 - Categorisation based on the number of jets and b-tagged jets.

Differential measurement:

veto events with ≥ 1 loose jets.

We define loose jets as jets with $p_T \in [20, 30]$ GeV.

CMS

Inclusive and differential measurement of tW production (dileptonic channel) 13 TeV, 138 fb⁻¹, tW process <u>Sub. to JHEP, arXiv: 2208.00924</u>

CMS

• Measurement dominated by systematic uncertainties.

14

Subleading jet p_{\perp} (GeV)

Pred.

Data / I

Inclusive and differential measurement of tW production (dileptonic channel) 13 TeV, 138 fb⁻¹, tW process <u>Sub. to JHEP, arXiv: 2208.00924</u>

• Differential measurement strategy:

- **SR**: 1j1b + veto loose jets.
- The differential cross sections are measured as a function of the leading lepton p_T , jet p_T , $\Delta \varphi(e^{\pm}, \mu^{\mp})$, $m(e^{\pm}, \mu^{\mp}, j)$, $p_z(e^{\pm}, \mu^{\mp}, j)$ and $m_T(e^{\pm}, \mu^{\mp}, j, p_T^{\text{miss}})$.
- Signal extraction and unfolding to a fiducial region in particle level (defined to mimic the signal region) are done at the same time in a maximum likelihood fit.
- The results are normalised to the fiducial cross section.
- Overall agreement between data and expectations within uncertainties.
- $\,\circ\,$ Compatible results between the DR and DS schemes \rightarrow small interference effects in this region.

CMS

• Event selection:

- $1 e/\mu$ (> 30 GeV).
- Veto of additional leptons (> 25 GeV).
- $\circ p_{\mathrm{T}}^{\mathrm{miss}}$ > 30 GeV.
- $\circ \quad m_{\rm T}(W_{\rm L}) > 50 \; {\rm GeV}.$

• Strategy:

- Signal region: **3j1b**. Jets with $p_T > 30$ GeV.
- A neural network is trained to separate between tW and $t\bar{t}$.
- A 2-dimensional discriminant is constructed with the neural network output in 65 GeV < $m(W_{\rm H})$ < 92.5 GeV and with the remaining $m(W_{\rm H})$ variable.
- The cross section is extracted from a binned profile maximumlikelihood fit to the 2-dimensional discriminant.

• Result is in good agreement with expectations at NLO+NNLL:

$$\sigma_{\rm obs.} = 26 \pm 7 \mathrm{pb}$$

$$\sigma_{\rm pred.} = 22.4 \pm 1.5 \text{pb}$$

Source	Uncertainty [%]
Jet energy scale	10
<i>b</i> -tagging	8
Jet energy resolution	7
$E_{\rm T}^{\rm miss}$ reconstruction	7
Lepton reconstruction	4
Luminosity	3
Jet vertex fraction	3
$t\bar{t}$ radiation	10
<i>tW</i> radiation	9
$tW-t\bar{t}$ interference	7
$t\bar{t}$ cross-section normalisation	6
Other background cross-section normalisations	5
tW and $t\bar{t}$ parton shower	4
tW and $t\bar{t}$ NLO matching	3
PDF	1
Model statistics	11
Data statistics	4
Total	27

Measurement of tW production (semileptonic channel) 13 TeV, 35.9 fb⁻¹, tW channel

• Event selection:

- $1 e(> 30 \text{ GeV})/\mu(> 26 \text{ GeV}).$
- Veto of additional leptons (> 10 GeV muons, > 20 GeV electrons).
- $\circ \geq 2$ jets.
- 1 jet must be b-tagged.

• Strategy:

- <u>Signal region</u>: events with three jets (3j).
- <u>Control regions</u>: events with two jets (2j; W+jets background CR) and events with four jets (4j; tt CR).
- QCD/multijet background: templates and normalisation from data.
- W+jets background: templates from simulation and normalisation from data.
- **Two** (for muon and for electron) **MVA** (BDTs) are trained in the signal region to discriminate between tW and $t\bar{t}$.
- Signal extraction by binned profile likelihood fit to BDT responses.

<u>JHEP11 (2021) 111</u>

Measurement of tW production (semileptonic channel) 13 TeV, 35.9 fb⁻¹, tW channel

CMS

Data

tW

QCD

VV

Z+jets

Single

🖾 Total unc

nie Wt

CMS

Data

tw

. 📃 W+jets

QCD

Single

tW sia

Total unc.

VV 🔲

25000 - Z+jets

60000 - W+jets

Events / bin 20000 20000

40000

30000F

20000

10000

1.05 0.95

45000 -

40000

35000

30000

20000

15000 10000

5000

1.05

0

Data/Pred.

Events / bin

Data/Pred.

<u>JHEP 11 (2021) 111</u>

- Leading uncertainties:
 - Jet energy scale.
 - QCD multijet normalisation.
 - W+jets normalisation.

Summary

- The latest measurements from single top processes have been made in the s, t and tW channels.
- The **s-channel** ATLAS measurement is the first performed at $\sqrt{s} = 13$ TeV giving 3.3σ of observed significance.
 - Main uncertainties: $t\bar{t}$ normalisation and JECs.
- The t-channel has been used to measure the top quark CKM elements, the top quark polarisation vector and differential cross sections depending on angular observables.
- The tW channel has been measured in the dileptonic (differential and inclusive cross sections) and semileptonic (inclusive) decay modes.

Universidad de Oviedo Universidá d'Uviéu University of Oviedo

Thanks for your attention

Backup

s-channel ME method

• Build event by event likelihood for hypothesis that final state X is obtained from process H_{proc} .

$$\mathcal{P}(X \mid H_{\text{proc}}) = \int d\Phi \frac{1}{\sigma_{H_{\text{proc}}}} \frac{d\sigma_{H_{\text{proc}}}}{d\Phi} T_{H_{\text{proc}}}(X \mid \Phi)$$
Normalised fully differential partonic cross section.

Transfer functions:

- Detector resolution.
- Reconstruction and btagging eff.
- 0

• Build MEM discriminant with bayes theorem:

$$P(S \mid X) = \frac{\sum_{i} P(S_i) \mathcal{P}(X \mid S_i)}{\sum_{i} P(S_i) \mathcal{P}(X \mid S_i) + \sum_{j} P(B_j) \mathcal{P}(X \mid B_j)}$$

t-channel CKM CMS

Production	Decay	Cross section × branching fraction (pb)
tWb	tWb	217.0 ± 8.4
tWb	(tWs + tWd)	0.41 ± 0.05
tWd	tWb	0.102 ± 0.015
tWs	tWb	0.92 ± 0.11

t-channel CKM CMS

Treatment	Uncertainty	$\Delta\sigma_{ST_{\rm b,b}}/\sigma$	(%)
Profiled	Lepton trigger and reconstruction	0.50	
	Limited size of simulated event samples	3.13	
	tt modelling	0.66	
	Pileup	0.35	
	QCD background normalisation	0.08	
	W+jets composition	0.13	
	Other backgrounds $\mu_{ extsf{R}}/\mu_{ extsf{F}}$	0.44	
	PDF for background processes	0.42	
	b tagging	0.73	
	Total profiled	3.4	
Nonprofiled	Integrated luminosity	2.5	V
	JER	2.8	1.
	JES	8.0	V
	PDF for signal process	3.8	
	Signal $\mu_{ m R}/\mu_{ m F}$	2.4	
	ME-PS matching	3.7	
	Parton shower scale	6.1	
	Total nonprofiled	11.5	
Total uncertainty		12.0	

 BSM case 1 (the top quark decays as in the SM, but the CKM matrix is modified):

$$\begin{split} |V_{\rm tb}| &= 0.988 \pm 0.027 \, ({\rm stat+prof}) \pm 0.043 \, ({\rm nonprof}) \\ |V_{\rm td}|^2 &+ |V_{\rm ts}|^2 = 0.06 \pm 0.05 \, ({\rm stat+prof}) \, {}^{+0.04}_{-0.03} \, ({\rm nonprof}). \end{split}$$

 BSM case 2 (the top quark decays in new unknown ways):

 $|V_{tb}| = 0.988 \pm 0.011 \text{ (stat+prof)} \pm 0.021 \text{ (nonprof)}$ $|V_{td}|^2 + |V_{ts}|^2 = 0.06 \pm 0.05 \text{ (stat+prof)} \pm 0.04 \text{ (nonprof)}$

t-channel ATLAS selection

Common event selection criteria				
Exactly one electron or muon				
Veto secondary low- $p_{\rm T}$ charged loose leptons				
	Exactly two jets			
$E_{\rm T}^{\rm miss} > 35 {\rm GeV}$				
	$m_{\rm T}(\ell, E_{\rm T}^{\rm min})$	(ss) > 60 GeV		
$p_{\rm T}(\ell) > 50 \left(1 - \frac{\pi - \Delta \phi(p_{\rm T}(j_1), p_{\rm T}(\ell)) }{\pi - 1} \right) \text{GeV}$				
Preselection region	Signal region	$t\bar{t}$ control region	W+ jets control region	
Exactly one <i>b</i> -tagged jet	Exactly one <i>b</i> -tagged jet	Exactly two <i>b</i> -tagged jet	Exactly one <i>b</i> -tagged jet	
	$m_{\ell b} < 153 \text{ GeV}$		$m_{\ell b} > 153 \text{ GeV}$	
	$m_{j\ell\nu b} > 320 \text{ GeV}$		$m_{j\ell\nu b} < 320 \text{ GeV}$	
	Trapezoidal requirement		Veto trapezoidal requirement	
	$H_{\rm T} > 190 { m ~GeV}$		$H_{\rm T} < 190 { m ~GeV}$	

Uncertainties in the polarisation measurement

Parameter	Extracted value	(stat.)
<i>t</i> -channel norm.	$+1.045 \pm 0.022$	(±0.006)
W+ jets norm.	$+1.148 \pm 0.027$	(± 0.005)
<i>tī</i> norm.	$+1.005 \pm 0.016$	(± 0.004)
$P_{x'}^t$	$+0.01 \pm 0.18$	(±0.02)
$P^{\bar{t}}_{x'}$	-0.02 ± 0.20	(± 0.03)
$P_{y'}^t$	-0.029 ± 0.027	(± 0.011)
$P_{y'}^{\bar{t}}$	-0.007 ± 0.051	(± 0.017)
$P_{z'}^{t}$	$+0.91 \pm 0.10$	(± 0.02)
$P_{z'}^{\overline{t}}$	-0.79 ± 0.16	(±0.03)

Uncertainty source	$\Delta P_{x'}^t$	$\Delta P_{x'}^{\bar{t}}$	$\Delta P_{y'}^t$	$\Delta P_{y'}^{\bar{t}}$	$\Delta P_{z'}^t$	$\Delta P_{z'}^{\bar{t}}$
Modelling						
Modelling (<i>t</i> -channel)	± 0.037	± 0.051	± 0.010	± 0.015	± 0.061	± 0.061
Modelling $(t\bar{t})$	± 0.016	± 0.021	± 0.004	± 0.016	± 0.003	±0.016
Modelling (other)	±0.013	±0.031	± 0.003	± 0.006	± 0.026	± 0.043
Experimental						
Jet energy scale	± 0.045	± 0.048	± 0.005	± 0.007	± 0.033	± 0.025
Jet energy resolution	±0.166	±0.185	±0.021	± 0.040	± 0.070	±0.130
Jet flavour tagging	± 0.004	± 0.002	< 0.001	± 0.001	± 0.007	± 0.009
Other experimental uncertainties	± 0.015	± 0.029	± 0.002	± 0.007	± 0.014	± 0.026
Multijet estimation	± 0.008	±0.021	< 0.001	± 0.001	± 0.008	±0.013
Luminosity	± 0.001	± 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Simulation statistics	± 0.020	± 0.024	± 0.008	±0.015	± 0.017	±0.031
Total systematic uncertainty	±0.174	±0.199	±0.025	± 0.048	±0.096	±0.153
Total statistical uncertainty	± 0.017	± 0.025	± 0.011	± 0.017	± 0.022	± 0.034

Impacts for the tW dileptonic measurement

Input variables of the BDT: CMS tW single lepton

Variable Description

Mass of the reconstructed Wboson decaying hadronically

Invariant mass of the b-tagged jet and sub-leading non b-tagged jet

Angular separation between the two non b-tagged jets

Angular separation between the reconstructed leptonic Wboson and leading non b-tagged jet Transverse momentum of the selected lepton

Energy of the two non b-tagged jets system

Angular separation between the b-tagged jet and the selected lepton

Transverse momentum of the system made of the three jets, lepton and $p_{\rm T}^{\rm miss}$