Cross-section based top quark mass measurements

15th International Workshop on Top-Quark Physics 05.09.2022, Durham (UK)

Matteo M. Defranchis (CERN) on behalf of the CMS and ATLAS Collaborations

Why we still measure m_t

- Important input to global electroweak fits
- Related to EW vacuum stability at M_P scale
- Proportional to t-H Yukawa coupling
- Enters loops with $\sim m_t^2$ dependence

Not uniquely defined concept. Each definition:

- Theoretical or practical (dis-)advantages
- Experimentally determined with different techniques → complementarity

 \rightarrow from <u>PDG</u>

Mass (direct measurements) $m = 172.69 \pm 0.30 \text{ GeV} {[a,b]}$ (S = 1.3) Mass (from cross-section measurements) $m = 162.5^{+2.1}_{-1.5} \text{ GeV} {[a]}$ Mass (Pole from cross-section measurements) $m = 172.5 \pm 0.7 \text{ GeV}$

arXiv:2204.04204

M_w [GeV]

Measuring m_t with different methods can provide us with information on the limits of the models we use

m_t [GeV]

Classes of top quark mass measurements

"Direct" measurements: reconstruct invariant mass of top quark decay products

- Can be very precise (~0.3 GeV)
- Depends on the details of the MC simulation
- \rightarrow see talk by M. Vanadia

Matteo M. Defranchis (CERN)

"Indirect" measurements: measure observable directly sensitive to m_t (e.g. inclusive/differential σ_{t})

- Compare to theory prediction in well-defined renormalisation scheme (pole, MS, MSR)
- Can be sensitive to soft-gluon effects at threshold, where mass sensitivity is the highest

"Third way": jet mass in boosted top decays can be calculated using SC-EFT

 \rightarrow can provide info on relation between m_t^{MC} and $m_t^{}$ (MSR)

see talk by M. Villaplana + e.g. S.Fleming, A.Hoang, S.Mantry, I.Stewart: PRD 77 (2008) 074010

m_t from cross sections: where do we stand

- 1. New m_t^{pole} result from combined ATLAS+CMS inclusive σ_{tt} at 7+8 TeV
- 2. New m^{pole} measurement from tt+1jet invariant mass from CMS
- Results obtained with different methods overall in good agreement
- CMS result from 3D cross section is the most precise result, to date, but may be significantly affected by threshold effects

ATLAS+CMS Preliminary LHC <i>top</i> WG	m _{top} from cross-section measurements June 2022			
total stat	$\begin{array}{c} \qquad \qquad$			
σ(tī) inclusive, NNLO+NNLL				
ATLAS, 7+8 TeV	172.9 ^{+2.5} [1]			
CMS, 7+8 TeV	• 173.8 ^{+1.7} [2]			
CMS, 13 TeV	169.9 $^{+1.9}_{-2.1}$ (0.1 ± 1.5 $^{+1.2}_{-1.5}$) [3]			
ATLAS, 13 TeV	173.1 ^{+2.0} [4]			
LHC comb., 7+8 TeV LHCtop WG	 [5]			
σ (tī+1j) differential, NLO				
ATLAS, 7 TeV	$= + 173.7 \begin{array}{c} +2.3 \\ -2.1 \end{array} (1.5 \pm 1.4 \begin{array}{c} +1.0 \\ -0.5 \end{array}) $ [6]			
CMS, 8 TeV (*)	$1 169.9 {}^{+4.5}_{-3.7} (1.1 {}^{+2.5}_{-3.1} {}^{+3.6}_{-1.6}) [7]$			
ATLAS, 8 TeV	$171.1 \begin{array}{c} ^{+1.2}_{-1.0} (0.4 \pm 0.9 \begin{array}{c} ^{+0.7}_{-0.3}) \end{array} $ [8]			
CMS, 13 TeV (*)	172.9 ^{+1.4} [9]			
σ (tī) n-differential, NLO				
ATLAS, n=1, 8 TeV	■ 173.2 ± 1.6 (0.9 ± 0.8 ± 1.2) [10]			
CMS, n=3, 13 TeV ⊢⊶	170.5 ± 0.8 [11]			
m _{top} from top quark decay	[1] EPJC 74 (2014) 3109 [6] JHEP 10 (2015) 121 [11] EPJC 80 (2020) 658 [2] JHEP 08 (2016) 029 [7] CMS-PAS-TOP-13-006 [40] DDD 02 (2014) 032004			
CMS, 7+8 TeV comb. [10]	[3] EPJC 79 (2019) 368 [8] JHEP 11 (2019) 150 [12] FHD 93 (2018) 072004 [4] EPJC 80 (2020) 528 [9] CMS-PAS-TOP-21-008 [13] EPJC 79 (2019) 290			
ATLAS, 7+8 TeV comb. [11]	[5] arXiv:2205.13830 [10] EPJC 77 (2017) 804 * preliminary			
55 160 165 170	175 180 185 190			
m	top [GeV] 4			

m_t^{pole} @NNLO from inclusive σ_{tt} at 7+8 TeV (LHC)

Matteo M. Defranchis (CERN) \rightarrow see talk by P. Hansen

arXiv:2205.13830

- Simultaneous fit of NNLO+NNLL (Top++) prediction to combined 7+8 TeV σ_{tt}
- Residual experimental dependence on m_t (acceptance) taken into account
- NB. extracted values of m_t^{pole} crucially depends on assumed value of α_s

$m^{}_t @ NNLO$ from inclusive $\sigma^{}_{tt}$ at 13 TeV (eµ)

Very similar m^{pole} results by ATLAS and CMS, also in terms of syst.

Smaller scale uncert. in MSbar result from CMS, despite absence of soft-gluon corrections

PDF set	m _t ^{pole} [GeV] pole CMS
ABMP16	169.9 ± 1.8 (fit + PDF + α_{S}) $^{+0.8}_{-1.2}$ (scale)
NNPDF3.1	173.2 ± 1.9 (fit + PDF + α_{S}) $^{+0.9}_{-1.3}$ (scale)
CT14	173.7 \pm 2.0 (fit + PDF + α_{S}) $^{+0.9}_{-1.4}$ (scale)
MMHT14	173.6 \pm 1.9 (fit + PDF + α_S) $^{+0.9}_{-1.4}$ (scale)

\rightarrow results agair	dependent o	n chosen \	value for α
-----------------------------	-------------	------------	-------------

		m
PDF set		m_t^{pole} (GeV)
CT14 NNPDF3.1 notop		$173.1^{+2.0}_{-2.1}$ $172.9^{+1.7}_{-7.7}$
CT10	ATLAS	$172.1^{+2.0}_{-2.0}$
MSTW	pore	$172.3^{+2.0}_{-2.1}$
NNPDF2.3		$173.4^{+1.9}_{-1.9}$
PDF4LHC		$172.1_{-2.0}^{+3.1}$

m,^{pole} @NLO from CMS 3D result at 13 TeV (ll)

- Simultaneous fit @NLO of m_t^{pole} , α_s , and PDFs in combination with HERA data
- Most precise result of m^{pole} to date
- Impact of threshold effects unknown

Matteo M. Defranchis (CERN)

EPJC 80 (2020) 658

$$m_{t}^{\text{pole}} = 170.5 \pm 0.7 \text{ (fit)} \pm 0.1 \text{ (model)}_{-0.1}^{+0.0} \text{ (param)} \pm 0.3 \text{ (scale) GeV} = 170.5 \pm 0.8 \text{ (total) GeV}^{-7}$$

How big are threshold effects?

Short answer: we don't really know

A study by Li Lin Yang et. al. based on next-to-leading power resummation suggests that the effect in the CMS 3D analysis (previous slide) can be as large as +1.4 GeV

This would lead to $m_t^{pole} = 171.9 \pm 0.8$ GeV, in better agreement with other pole mass measurement

However, there is no consensus in the theory community on the presented NNLO+NLP results, and therefore we do not have a conclusive answer on the issue

- This is currently the **limiting factor** of indirect m, measurement at threshold at the LHC
- Hard to think of consistent ways to assess the size of such uncertainty in the absence of a calculation

m_t @NLO from tt+1jet at 8 TeV in ATLAS ({+jets)

Invariant mass of tt+1jet system sensitive to value of m_t near the production threshold

$$\mathcal{R}(m_t^{\text{pole}},\rho_{\text{s}}) = \frac{1}{\sigma_{t\bar{t}+1\text{-jet}}} \cdot \frac{\mathrm{d}\sigma_{t\bar{t}+1\text{-jet}}}{\mathrm{d}\rho_{\text{s}}}, \qquad \rho_{\text{s}} = \frac{2m_0}{m_{t\bar{t}+1\text{-jet}}}$$

- Normalised differential cross section unfolded to the parton level
 → normalisation mitigates α_s dependence
- Compared to dedicated NLO+PS predictions in pole and MS schemes
 DS approximates threshold effects: data if

 \rightarrow PS approximates threshold effects: *does it* affect the mass definition?

Larger scale uncertainties in MSbar scheme at threshold (contrary to inclusive σ_{tt})

Matteo M. Defranchis (CERN)

JHEP 11 (2019) 150

m, @NLO from tt+1jet at 13 TeV in CMS (ll)

arXiv:2207.02270

- NN techniques to optimally reconstruct ρ variable and categorise processes
- Maximum-likelihood unfolding to reduce impact of systematic uncertainties

m_t @NLO from tt+1jet at 13 TeV in CMS (*ll*) **1**

arXiv:2207.02270

- m_t^{pole} extracted by fitting NLO predictions to normalised differential cross section
- Good agreement between data and predictions with both CT18 and ABMP16 PDFs
- Milder experimental dependence on m_t and larger PDF uncertainties wrt 8 TeV

→ more details in talk by Sebastian Wuchterl

Differential measurements sensitive to jet-related syst. + kin. reco

m^{pole} from leptonic obs. @ NLO, ATLAS 8 TeV

EPJC 77 (2017) 804

- Only make use of leptonic observables, which are less sensitive to jet syst. + no kinematic reconstruction
- Individual / simultaneous fits to NLO MCFM prediction
- PDF and QCD uncertainties profiled as nuisance parameters with gaussian priors → can be pulled / constrained

NNLO calculations now available: M.Czakon, A.Mitov, R.Poncelet JHEP 05 (2021) 212

Matteo M. Defranchis (CERN)

 \rightarrow see talk by R. Poncelet

Running of $m_t @ NLO$ with 13 TeV data in CMS

 $\mu_{\rm m} = \mu_{\rm L}/2 \,[{\rm GeV}]$

Choice of dynamic scales following JHEP 08 (2020) 027

Matteo M. Defranchis (CERN)

Good agreement with QCD running @ 1 loop 13

NNLO prediction in MS scheme using Matrix

- First differential prediction of this kind, implemented in *Matrix* framework
- Significant reduction of scale uncertainties
- Possibility to set scale dynamically bin-by-bin
 -> extract directly m_t(µ_m)

Choice for dynamic scale: $\mu_m = m_{tt}/2$, since $m_{tt}/2 \rightarrow m_t$ near the production threshold

 \rightarrow can be used together with CMS data to perform first extraction of $\rm m_t$ running @ NNLO

Limitation: non-negligible numerical uncertainties due to limited resources when producing several mass points and PDF variations for QCD fit

Matteo M. Defranchis (CERN)

S.Catani, S.Devoto, M.Grazzini, S.Kallweit, J.Mazzitelli

m, running @NNLO with CMS 13 TeV data

energy scale $\mu_m = \mu_k/2$

m_t from boosted m_{jet} at 13 TeV in CMS

- Analysis makes use of XCone exclusive algorithm to reconstruct jets and sub-jets → improved resolution
- Dedicated calibration of FSR using substructure variables, and dedicated jet mass calibration
- x3 improvement over CMS 2016 analysis!

As analytic calculations for m_{jet} are not yet available, m_t extraction is demonstrated using Powheg simulation

Comparable precision to direct measurement, but with different sensitivity to systematics uncertainties

More details in talks by M. Vanadia and D. Schwarz + poster by R. Kogler

Matteo M. Defranchis (CERN)

Source	Uncertainty [GeV]
Statistical uncertainty	0.22
Experimental uncertainty	0.57
JER	0.40
JMS	0.27
JMS flavour	0.27
JES	0.10
Model uncertainty	0.48
Choice of m_{top}	0.37
CR	0.19
h _{damp}	0.19
FSR	0.02

CMS-PAS-TOP-21-012

 $m_{
m t} = 172.76 \pm 0.22 \,(
m stat) \pm 0.57 \,(
m exp) \pm 0.48 \,(
m model) \pm 0.24 \,(
m theo) \, GeV$ = 172.76 ± 0.81 GeV.

Summary

Presented most recent and most precise cross-section based measurements of $m_t^{}$ \rightarrow advantage of a clear theoretical interpretation

- Results from inclusive σ_{tt} strongly depend on the assumed value of α_s
- Results from differential measurements rely on poorly understood threshold region
- → theoretical advances needed in order to obtain accurate and unambiguous results

Presented first measurement of m_t running at NNLO + precise extraction of m_t from boosted jet mass distribution in CMS

Thank you!

mt from LHC 7+8 TeV combination

$$\chi^{2} = \frac{1}{1 - \rho^{2}} \left(\Delta (7 \text{ TeV})^{2} + \Delta (8 \text{ TeV})^{2} - 2\rho \Delta (7 \text{ TeV}) \Delta (8 \text{ TeV}) \right), \text{ with}$$
$$\Delta = \frac{\sigma_{t\bar{t}}(m_{t}^{\text{pole}}) - \sigma_{t\bar{t}}^{\text{p}}(m_{t}^{\text{pole}}, \alpha_{\text{s}}(m_{Z}))}{\delta},$$

ATLAS pole mass from inclusive @13 TeV

Uncertainty source	Δm_t^{pole} (GeV)
Data statistics	0.2
Analysis systematics	0.6
Integrated luminosity	0.8
Beam energy	0.1
PDF+ $\alpha_{\rm S}$	$^{+1.5}_{-1.4}$
QCD scales	+1.0 -1.5
Total uncertainty	+2.0 -2.1

CMS inclusive 13 TeV

CMS 3D impacts

ts	Parameter	Variation	$\alpha_S(m_Z)$	$m_{\rm t}^{\rm pole}$ [GeV]
	Fit uncertainty			
	Total	$\Delta \chi^2 = 1$	± 0.0016	± 0.7
	Model uncertainty			
	$f_{ m s}$	$f_{\rm s} = 0.5$	+0.0001	0.0
	$f_{ m s}$	$f_{\rm s} = 0.3$	0.0000	0.0
	Q^2_{\min}	$Q_{\min}^2 = 5.0 \mathrm{GeV^2}$	+0.0002	+0.1
	Q^2_{\min}	$Q_{\rm min}^2 = 2.5 {\rm GeV}^2$	-0.0004	-0.1
	$M_{ m c}$	$M_c = 1.49 \mathrm{GeV}$	+0.0001	0.0
	$M_{ m c}$	$M_c = 1.37 \mathrm{GeV}$	0.0000	0.0
	Total		$+0.0002 \\ -0.0004$	$^{+0.1}_{-0.1}$
	PDF parametrisati	on uncertainty		
	$\mu_{\mathrm{f},0}^2$	$\mu_{\rm f,0}^2 = 2.2 {\rm GeV}^2$	-0.0001	0.0
	$\mu_{\mathrm{f},0}^2$	$\mu_{\rm f,0}^2 = 1.6 {\rm GeV}^2$	+0.0002	0.0
	$A'_{ m g}$	set to 0	+0.0002	-0.1
	E_{g}	set to 0	+0.0008	0.0
	Total		+0.0008 -0.0001	-0.1
	Scale uncertainty		010001	
	$\mu_{\rm r}$ variation	$\mu_{ m r}=H'$	+0.0004	-0.2
	$\mu_{\rm r}$ variation	$\mu_{ m r} = H'/4$	+0.0007	+0.1
	$\mu_{\rm f}$ variation	$\mu_{ m f}=H'$	-0.0002	+0.3
	$\mu_{\rm f}$ variation	$\mu_{ m f} = H'/4$	+0.0001	-0.3
	$\mu_{\rm r,f}$ variation	$\mu_{ m r,f}=H'$	+0.0004	+0.1
	$\mu_{\rm r,f}$ variation	$\mu_{ m r,f}=H'/4$	+0.0011	-0.2
	Alternative $\mu_{r,f}$	$\mu_{ m r,f}=H/2$	-0.0005	+0.1
	Total		$+0.0011 \\ -0.0005$	$^{+0.3}_{-0.3}$

ATLAS tt+1jet 8 TeV

Mass scheme	$m_t^{ m pole}~[{ m GeV}]$	$m_t(m_t) {\rm [GeV]}$	
Value	171.1	162.9	
Statistical uncertainty	0.4	0.5	
Simulation uncertainties			
Shower and hadronisation	0.4	0.3	
Colour reconnection	0.4	0.4	
Underlying event	0.3	0.2	
Signal Monte Carlo generator	0.2	0.2	
Proton PDF	0.2	0.2	
Initial- and final-state radiation	0.2	0.2	
Monte Carlo statistics	0.2	0.2	
Background	< 0.1	< 0.1	
Detector response uncertainties			
Jet energy scale (including b -jets)	0.4	0.4	
Jet energy resolution	0.2	0.2	
Missing transverse momentum	0.1	0.1	
b-tagging efficiency and mistag	0.1	0.1	
Jet reconstruction efficiency	< 0.1	< 0.1	
Lepton	< 0.1	< 0.1	
Method uncertainties			
Unfolding modelling	0.2	0.2	
Fit parameterisation	0.2	0.2	
Total experimental systematic	0.9	1.0	
Scale variations	(+0.6, -0.2)	(+2.1, -1.2)	
Theory $PDF \oplus \alpha_s$	0.2	0.4	
Total theory uncertainty	(+0.7, −0.3)	(+2.1, -1.2)	
Total uncertainty	(+1.2, -1.1)	(+2.3, -1.6)	

CMS tt+1j CMS 13 TeV

CMS tt+1j CMS 13 TeV

ATLAS leptonic observables 8 TeV

ATLAS leptonic observables 8 TeV

$$\chi^2(\mathbf{b}_{\exp}, \mathbf{b}_{th}) = \sum_i \frac{\left(\varsigma_i^{\exp} + \sum_j \gamma_{ij}^{\exp} b_{j,\exp} - \varsigma_i^{th} - \sum_k \gamma_{ik}^{th} b_{k,th}\right)^2}{d_{ii}^2} + \sum_j b_{j,\exp}^2 + \sum_k b_{k,th}^2 + L,$$

The χ^2 for the consistency of each prediction with the data was calculated using Eq. (9), incorporating both PDF and QCD scale uncertainties into the theoretical uncertainties represented by the nuisance parameters **b**_{th}.

	CT14	MMHT	NNPDF 3.0	HERAPDF 2.0	ABM 11	NNPDF nojet
$\mu_F = \mu_R = m_t/2$						
$\chi^2/N_{\mathrm dof}$	71/68	70/68	67/68	67/68	71/68	64/68
m_t^{pole} [GeV]	173.5 ± 1.2	173.4 ± 1.2	173.2 ± 1.2	172.9 ± 1.2	$172.8^{+1.3}_{-1.2}$	173.1 ± 1.2
Data statistics	± 0.9	± 0.9	± 0.9	±0.9	±0.9	± 0.9
Expt. systematic	+0.7 -0.8	± 0.8	± 0.8	± 0.9	$+0.9 \\ -0.8$	± 0.8
PDF uncertainty	± 0.1	± 0.1	+0.1 -0.2	± 0.1	± 0.1	± 0.4
QCD scales	± 0.1	± 0.1	$^{+0.1}_{-0.0}$	± 0.1	± 0.1	± 0.0
$\mu_F = \mu_R = H_T/4$						
$\chi^2/N_{\mathrm dof}$	69/68	67/68	64/68	61/68	66/68	60/68
m_t^{pole} [GeV]	173.6 ± 1.3	173.4 ± 1.3	173.2 ± 1.3	173.6 ± 1.3	$173.7^{+1.3}_{-1.2}$	$173.2^{+1.3}_{-1.4}$
$\mu_F = \mu_R = E_T/2$						
$\chi^2/N_{\mathrm dof}$	71/68	70/68	66/68	64/68	68/68	64/68
$m_t^{ m pole}$ [GeV]	174.7 ± 1.4	$174.5^{+1.5}_{-1.4}$	$174.3^{+1.5}_{-1.4}$	$173.6^{+1.3}_{-1.2}$	$173.4^{+1.2}_{-1.1}$	$174.0^{+1.5}_{-1.4}$

Running m_t CMS, likelihood unfolding

NNLO running: fit strategy

$$\chi^{2}(\vec{m}, \vec{j}, \vec{\eta}) = \vec{\Delta}^{\mathrm{T}}(\vec{m}, \vec{j}, \vec{\eta}) C_{\exp}^{-1} \vec{\Delta}(\vec{m}, \vec{j}, \vec{\eta}) + \sum_{p=1}^{\mathrm{nPDF}} j_{p}^{2} + \sum_{t=1}^{\mathrm{nPred}} \eta_{t}^{2}$$
$$\Delta_{k}(m_{k}, \vec{j}, \vec{\eta}) = \sigma_{\exp}^{k} - \sigma_{\mathrm{th}}^{k}(m_{k}, \vec{j}, \vec{\eta})$$

$$\sigma_{\rm th}^t(\eta_t) = \sigma_{\rm th}^t(1+\eta_t \delta_{\rm num}^t)$$
$$\sigma_{\rm th}^{m,k}(\vec{j},\vec{\eta}) = \sigma_{\rm th}^{m,k}(\eta_{m,k}) \prod_{p=1}^{\rm nPDF} \left[1+j_p \left(\frac{\sigma_{\rm th}^{p,k}(\eta_{p,k})}{\sigma_{\rm th}^{m_0,k}(\eta_{m_0,k})} - 1 \right) \right]$$

Running NNLO: interpolation

Quadratic interpolation

Experimental uncertainty

Measured cross section

350

340

330

[qd] 320

~[±] 310

300

290

280

55.0

52.5

50.0

45.0

42.5

40.0

120

[qd] 47.5

NNLO calculation: JHEP 08 (2020) 027 CMS data at $\sqrt{s} = 13$ TeV

154

NNLO calculation: JHEP 08 (2020) 027 CMS data at $\sqrt{s} = 13$ TeV

140

 $m_t(\mu_4/2)$ [GeV]

150

ABMP16 5 nnlo PDF set

130

156

 $m_{\rm t}(\mu_2/2)$ [GeV]

158

160

Measured and calculated $\sigma_{t\bar{t}}^4$

Quadratic interpolation

Measured cross section

Experimental uncertainty

160

NNLO calculation

162

164

ABMP16 5 nnio PDF set

152

150

Matteo M. Defranchis (CERN)

31

Running m_t @ NLO vs NNLO

N.B. different choices of central scales, central values not comparable!

NLO:

$$\begin{split} m_{\rm t}(\mu_1) &= 155.4 \pm 0.8 \; ({\rm fit}) \pm 0.2 \; ({\rm PDF} + \alpha_S) \pm 0.1 \; ({\rm extr}) \, {}^{+0.9}_{-0.6} \; ({\rm scale}), \\ m_{\rm t}(\mu_2) &= 150.9 \pm 3.0 \; ({\rm fit}) \, {}^{+1.1}_{-0.7} \; ({\rm PDF} + \alpha_S) \, {}^{+0.4}_{-0.5} \; ({\rm extr}) \, {}^{+3.9}_{-4.3} \; ({\rm scale}), \\ m_{\rm t}(\mu_3) &= 148.2 \pm 4.6 \; ({\rm fit}) \, {}^{+2.0}_{-1.4} \; ({\rm PDF} + \alpha_S) \, {}^{+0.9}_{-1.0} \; ({\rm extr}) \, {}^{+7.3}_{-9.5} \; ({\rm scale}), \\ m_{\rm t}(\mu_4) &= 136.4 \pm 9.0 \; ({\rm fit}) \, {}^{+3.8}_{-3.0} \; ({\rm PDF} + \alpha_S) \, {}^{+2.8}_{-2.3} \; ({\rm extr}) \, {}^{+9.6}_{-16.1} \; ({\rm scale}). \end{split}$$

	$\mu_k/2 \; [{ m GeV}]$	$m_{ m t}(\mu_k/2)~[{ m GeV}]$	$\exp [\text{GeV}]$	PDF+num [GeV]	scale $[GeV]$
NNLO:	192	160.90	0.61	0.81	+0.13, -0.69
	238	156.9	2.5	2.4	+1.4, -3.0
	322	152.9	4.2	4.4	+4.4, -6.7
	512	134.8	8.7	7.0	+9.0, -12.2

Running $m_t @ NLO vs NNLO$

Boosted m_{jet} CMS

Source	Uncertainty [GeV]
Total	0.81
Statistical	0.22
Experimental total	0.57
Jet energy resolution	0.40
Jet mass scale	0.27
Jet mass scale flavour	0.27
Jet energy scale	0.09
Pileup	0.08
MC statistics	0.07
Additional XCone corrections	0.03
Backgrounds	0.01
Model total	0.48
Choice of $m_{\rm t}$	0.37
$h_{\rm damp}$	0.19
Colour reconnection	0.19
Underlying event tune	0.12
$\mu_{\rm F}$, $\mu_{\rm R}$ scales	0.07
ISR	0.06
FSR	0.03
Theory total	0.24
FSR	0.14
Underlying event tune	0.13
Colour reconnection	0.10
$\mu_{\rm F}$, $\mu_{ m R}$ scales	0.06
h_{damp}	0.06
ISR	0.06

