

Direct top quark mass measurements with the ATLAS and CMS detectors

Marco Vanadia, on behalf of the ATLAS and CMS collaborations TOP 2022 5/9/2022 Durham

Introduction

- $m_t \sim 173 \text{ GeV} \rightarrow \text{top quark has many unique features}$
 - decay quicker than <u>hadronization</u> and <u>spin decorrelation</u>
 - $\circ \quad \underline{\text{Yukawa coupling }} O(1)$
 - top signatures for many <u>BSM models</u>
- Precise measurement of m_t crucial
 - \circ <u>EW</u> precision tests
 - \circ <u>Higgs</u> production, self-coupling, top-quark loops
 - $\circ \quad \text{Stability of } \underline{SM} \dots$
- LHC is a <u>top factory</u>
 - \circ ~140/fb per experiment @ 13 TeV
 - **a** $\sim 830 \text{ pb (tt)} + \sim 300 \text{ pb (t)}$
 - \circ Expected ~250/fb per experiment @ 13.6 TeV
 - $\sim 920 \text{ pb (tt)} + \sim 330 \text{ pb (t)}$
- m_t measurements <u>challenge</u> for theory & experiments
 - control <u>uncertainties</u> at per-mill level
 - <u>modelling</u> uncertainties
 - <u>interpretation</u> of measurements: $m_t^{MC} \leftrightarrow m_t^{pole}$

see also ATL-PHYS-PUB-2021-034

and Miguel's talk on tuesday

PhysRevD.97.056006

Outline

<u>CMS</u>

- ttbar *l*+jets <u>CMS-PAS-TOP-20-008</u>
- single-top t-channel JHEP 12 (2021) 161
- also: <u>CMS-PAS-TOP-21-012</u> presents a m_t^{MC} measurement obtained from a cross-section
 - this was already covered in Matteo's talk!

ATLAS

- ttbar soft muon tagging <u>TOPQ-2017-17</u> arXiv:2209.00583
- ttbar *ll* <u>ATLAS-CONF-2022-058</u>

Top mass ℓ +jets

- 1 isolated e or μ
- ≥ 4 jets
- 2 b-jets (WP ϵ =78% with light-mistag rate 1%)
- <u>kinematic fit</u>: χ^2 minimization
 - $\circ \quad \begin{array}{l} 4 \text{ permutations: } 2 \text{ b-jet} \leftrightarrow \text{b-quark } x \ 2 \\ p_T^{neutrino} \end{array}$
 - $\circ~$ uses 4-mom. of lept., jets, $p_{T}^{\ miss}$, resolutions
- Select permutation with max $P_{GOF} = exp(-\chi^2/2)$
- Events classified as $P_{GOF} < and > 0.2$

Main observables:

• $m_t^{\text{fit}} \text{ for } P_{\text{GOF}} > 0.2$ • $m_u^{\text{reco}} \text{ for } P_{\text{GOF}} < 0.2$

Top mass ℓ +jets

CMS-PAS-TOP-20-008

<u>Additional observables</u> included in the measurement to constraint syst. uncertainties:

histog	set label					
observable	category	1D	2D	3D	4D	5D
$m_{ m t}^{ m fit}$	$P_{\rm gof} \ge 0.2$	х	х	х	х	x
$m_{\mathrm{W}}^{\mathrm{reco}}$	$P_{\rm gof} \ge 0.2$		x	х	x	х
$m_{\ell \mathrm{b}}^{\mathrm{reco}}$	$P_{\rm gof} < 0.2$			х	х	х
$m_{\ell \mathrm{b}}^{\mathrm{reco}}/m_{\mathrm{t}}^{\mathrm{fit}}$	$P_{\rm gof} \ge 0.2$				х	х
R_{bq}^{reco}	$P_{\rm gof} \ge 0.2$					х

The mass is extracted from the observables with a profiled ML fit

Top mass *l*+jets

- <u>Most precise</u> result to date with 0.38 GeV uncertainty!
- Data stat 0.04 GeV
- Dominant uncertainty b-jet energy correction
- FSR description from PS is important and has a strong constraint (see next slide)

CMS-PAS-TOP-20-008

ISR/FSR PS uncertainty:

- 32 <u>uncorrelated</u> variations of a factor 2 on $\mu_{\rm B}$ and non-singular terms cNS (see <u>PRD.94.074005</u>)
- cNS separately varied for branching type $(g \rightarrow gg, g \rightarrow qq, g \rightarrow qg, q \rightarrow qg)$
- pull due to m_w^{reco}
- result assuming full correlation $m_{t}=172.14\pm0.31$ GeV

<u>Top mass l</u>-

≥ 70000

ഹ 60000

st 50000 40000

30000

20000

10000

1.9

0.5^L

50

Data/MC

Data

- more compatible with previous results Ο (which assumed correlation)
- pulls to different NPs support choice to decorrelate

Previous result Eur. Phys. J. C 78, 891 (2018) $mt = 172.25 \pm 0.63 \text{ GeV}$

<u>Top mass single-top</u>

- <u>t-channel</u> single-top events:
 - independent sample @ lower kin. threshold Ο
 - different syst, less affected by Color Reconn.
- 1 isolated e or μ , 2 jets, 1 b-tagged WP: $\varepsilon = 55\%$, mistag 0.1% light and 6% c
- top 4-momentum from decay products
 - $\mathbf{m}_{\mathbf{w}}$ applied as constraint Ο

 $m_{\rm T} = \sqrt{(p_{\rm T,l} + p_{\rm T}^{\rm miss})^2 - (p_{x,l} + p_x^{\rm miss})^2 - (p_{y,l} + p_y^{\rm miss})^2}$

- <u>QCD bkg</u> from m_{T} fit
 - template from
 - non-isolated lepton events
 - method validated in events with no b-jets
 - 50% uncertainty assigned to yield and shape
 - events with $m_{\pi} > 50 \text{ GeV}$ are used afterwards

Top mass single-top

<u>JHEP 12 (2021) 161</u>

	F	Rank	
Variable	Muon	Electron	Description
$\Delta R_{\mathrm{bj}'}$	1	1	Angular separation in (η, ϕ) space between the b-tagged and untagged jets
Untagged jet $ \eta $ $(\eta_{i'})$	2	2	Absolute pseudorapidity of the untagged jet
$m_{bj'}$	3	3	Invariant mass of the system comprising the b-tagged and untagged jets
o*		. ž	Cosine of the angle between the lepton and untagged jet in the rest frame
cost	4	4	of the top quark
$m_{ m T}$	5	5	Transverse mass as defined in eq. (4.1)
FW1		6	First-order Fox-Wolfram moment [65, 66] (electron final state)
$ \Delta \eta_{l\mathrm{b}} $	6	7	Absolute pseudorapidity difference between the lepton and b-tagged jet
$p_{\mathrm{T}}^{\mathrm{b}} + p_{\mathrm{T}}^{\mathrm{j}'}$	7	8	Scalar sum of the $p_{\rm T}$ of the b-tagged and untagged jets
$ \eta_l $	8		Absolute pseudorapidity of the lepton (muon final state)

<u>MVA discriminant</u> built to enhance single-top t-channel contribution

 $\underline{\text{Low correlation}}$ between BDT score and m_{t} (-13%)

<u>Top mass single-top</u>

ML fit to $\zeta{=}{\rm ln}({\rm m}_t/1~{\rm GeV})$

- <u>QCD bkg subtracted</u> before the fit
- signal, tt, EW component modelled with <u>analytical functions</u>
- <u>peak position</u> ζ_0 is the POI
- validated in region with inverted BDT cut
- sig and bkg <u>normalization profiled</u> in the fit
- all other uncertainties <u>externalized</u>

<u>JHEP 12 (2021) 161</u>

Top mass single-top

<u>JHEP 12 (2021) 161</u>

improves by 30% wrt previous result!

$$m_{\rm t} = 172.13 \pm 0.32 \,({\rm stat+prof})^{+0.69}_{-0.71} \,({\rm ext}) \,{\rm GeV} = 172.13^{+0.76}_{-0.77} \,{\rm GeV}$$

$$R_{m_{\rm t}} = \frac{m_{\rm \bar{t}}}{m_{\rm t}} = 0.9952 \pm 0.0040 \,({\rm stat} + {\rm prof})^{+0.0068}_{-0.0096} \,({\rm ext}) = 0.9952^{+0.0079}_{-0.0104}$$

$$\Delta m_{\rm t} = m_{\rm t} - m_{\rm \bar{t}} = 0.83 \pm 0.69 \,({\rm stat} + {\rm prof})^{+1.65}_{-1.16} \,({\rm ext}) \,{\rm GeV} = 0.83^{+1.79}_{-1.35} \,{\rm GeV}$$

Dominant uncertainties:

- Stat 0.19 GeV, Stat+profiled 0.32 GeV
- JES 0.4 GeV, b-tagging 0.20 GeV
- Color reconnection, Early res. decay 0.24 GeV
- b-quark hadronization 0.23 GeV
- FSR PS 0.28 GeV

difference between top and anti-top

TOPQ-2017-17 arXiv:2209.00583

- Identify <u>semi-lept. decay</u> of B-had.
 - BR=20% for $B \rightarrow ... \rightarrow \mu + X$
- Invariant mass $m_{\ell \mu} \rightarrow m_t$
 - purely leptonic,

less sensitive to jets unc.

more direct impact from $b \rightarrow B$

fragmentation modelling

Top mass SMT: signal modelling

TOPQ-2017-17 arXiv:2209.00583

Hadron	PDG	Powheg+Pythia8	Scale Factor
B^0	0.404 ± 0.006	0.429	0.941 ± 0.014
B^+	0.404 ± 0.006	0.429	0.942 ± 0.014
B_s^0	0.103 ± 0.005	0.095	1.088 ± 0.052
<i>b</i> -baryon	0.088 ± 0.012	0.047	1.87 ± 0.26
D^+	0.226 ± 0.008	0.290	0.780 ± 0.027
D^0	0.564 ± 0.015	0.553	1.020 ± 0.027
D_s^0	0.080 ± 0.005	0.093	0.857 ± 0.054
c-baryon	0.109 ± 0.009	0.038	2.90 ± 0.24

<u>b-frag.</u> universality for ee/pp assumed

- recent results: deviations for frag.
 fractions, but significant only at low-p_π
- for frag. function, supported by recent CMS studies <u>CMS-PAS-TOP-18-012</u>

Thus:

- r_b (frag. func. parameter in Pythia8) fitted on LEP+SLD data (<u>now with</u> <u>bin-by-bin correlation</u>)
- fragmentation fractions and BRs reweighted to world averages

Top mass SMT: recoil in PS

<u>TOPQ-2017-17</u> arXiv:2209.00583

see slides from <u>P. Skands</u>

For the first time used <u>uncertainty on gluon emission</u> in $t \rightarrow Wb$

- impacts PS modelling of gluons from b→gb
- changes energy distribution within jet
- changes jet p_T due to out-of-cone radiation → impacts jet-based measurement
- b-frag. func. changed as a side effect.

Nominal in better agreement with NLL resummations \rightarrow reweighted to that

• No dedicated tune yet!

Top mass SMT: results

- 174.41 ± 0.39 (stat.) ± 0.66 (syst.) ± 0.25 (recoil) GeV
 - Final result from ML
 <u>profiled fit</u> on M_{lu}
 - Recoil uncertainty not profiled
 - Result stable vs changes of selection or tune (i.e. Monash vs A14-r_b)
 - Compatible at 2σ level with previous ATLAS/CMS results

Top mass ll

ATLAS-CONF-2022-058

139/fb @ 13 TeV

Updated dataset and new Machine Learning method for event topology reconstruction

- 2 isolated e or μ with opposite charge
- ≥ 2 jets, 2 b-jets
 - WP ϵ =70% with light/c mistag rate 0.2%/10%
- $m_{\ell\ell} < 15 \text{ GeV}$ or within 80-100 GeV vetoed for $ee/\mu\mu$ events
- DNN to identify b-jet/ℓ pairing using
 - $\circ~~\Delta R$ and inv. mass of $\ell b\text{-pairs}$
 - $\circ \quad p_T \text{ and } \eta \text{ of } \ell b \text{-pairs}$
 - \circ p_{T}^{T} and η of leptons, b-jets
 - m_{bb}
- Select permutation (out of 2) with highest DNN score
 - good data/MC agreement!

classifier performance doesn't depend on $\rm m_{t\ 16}$

Top mass ll

<u>Optimised</u> selection:

- $DNN_{High} > 0.65$
- Select the ℓ b-pair with largest p_T
- For that pair, $p_T > 160 \text{ GeV}$
- b-jet in that pair must be leading b-jet

The **invariant mass** of the selected ℓ b-pair, $m_{\ell b}^{High}$, is used as observable. Fit performed in the range: $50 \leq m_{\ell b}^{High} \leq 140 \text{ GeV}$

Top mass ll

10% less events in data than MC, due to known mismodelling of $\ell b \ p_{\rm T}$

 partially coming from missing NNLO corrections to top p_T

But:

- measurement is shape-only
- reweighting top p_T, ttbar p_T and invariant mass to NNLO predictions covered by scale uncertainties

no bias is expected by the normalisation disagreement

<u>Top mass ll</u>

$$m_{\text{top}}^{\text{dilepton}} = 172.63 \pm 0.20 \,(\text{stat}) \pm 0.67 \,(\text{syst}) \pm 0.37 \,(\text{recoil}) \,\,\text{GeV}$$

Final result from <u>unbinned ML fit</u> $m_{\ell b}^{High}$

- Dominant uncertainties are modelling (ME algorithm, ISR/FSR, color reconnections) and JES
- <u>New recoil uncertainty</u> also dominant
 - no dedicated tune though, likely overestimated
- Crosscheck for off-shell and non-resonant effects using <u>bb4l</u> has been performed. The difference in m_t is smaller than modelling uncertainties
- Without recoil uncertainty, improves by ~17% the 8 TeV precision

<u>Top mass ll</u>

 $m_{top}^{dilepton} = 172.63 \pm 0.20 \text{ (stat)} \pm 0.67 \text{ (syst)} \pm 0.37 \text{ (recoil) GeV}$ Final result from <u>unbinned ML fit</u> m_{fb}^{High}

- Dominant uncertainties are modelling (ME algorithm, ISR/FSR, color reconnections) and JES
- <u>New recoil uncertainty</u> also dominant
 - no dedicated tune though, likely overestimated
- Crosscheck for off-shell and non-resonant effects using <u>bb4l</u> has been performed. The difference in m_t is smaller than modelling uncertainties
- Without recoil uncertainty, improves by ~17% the 8 TeV precision

	$m_{\rm top} [{\rm GeV}]$
Result	172.63
Statistics	0.20
Method	0.05 ± 0.04
Matrix-element matching	0.35 ± 0.07
Parton shower and hadronisation	0.08 ± 0.05
Initial- and final-state QCD radiation	0.20 ± 0.02
Underlying event	0.06 ± 0.10
Colour reconnection	0.29 ± 0.07
Parton distribution function	0.02 ± 0.00
Single top modelling	0.03 ± 0.01
Background normalisation	0.01 ± 0.02
Jet energy scale	0.38 ± 0.02
<i>b</i> -jet energy scale	0.14 ± 0.02
Jet energy resolution	0.05 ± 0.02
Jet vertex tagging	0.01 ± 0.01
b-tagging	0.04 ± 0.01
Leptons	0.12 ± 0.02
Pile-up	0.06 ± 0.01
Recoil effect	0.37 ± 0.09
Total systematic uncertainty (without recoil)	0.67 ± 0.05
Total systematic uncertainty (with recoil)	0.77 ± 0.06
Total uncertainty (without recoil)	0.70 ± 0.05
Total uncertainty (with recoil)	0.79 ± 0.06

Conclusion and final remarks

- CMS l+jets CMS-PAS-TOP-20-008 $171.77 \pm 0.38 \text{ GeV}$
- CMS single-top <u>JHEP 12 (2021) 161</u>

 $m_{\rm t} = 172.13 \pm 0.32 \,({\rm stat} + {\rm prof})^{+0.69}_{-0.71} \,({\rm ext}) \,{\rm GeV} = 172.13^{+0.76}_{-0.77} \,{\rm GeV}$

• ATLAS Soft muon tagging <u>TOPQ-2017-17</u> arXiv:2209.00583

 174.41 ± 0.39 (stat.) ± 0.66 (syst.) ± 0.25 (recoil) GeV

• ATLAS Dilepton template mass <u>ATLAS-CONF-2022-058</u>

 $172.63 \pm 0.20 \text{ (stat)} \pm 0.67 \text{ (syst)} \pm 0.37 \text{ (recoil) GeV}$

- Just started to use full power of run-2 data(and run-3 ongoing...)
- More optimised and alternative experimental techniques being developed
- ttbar modelling biggest challenge, need inputs from exp. and theory