Studies of top quark spin and polarisation in ATLAS

Miriam Watson University of Birmingham on behalf of the ATLAS Collaboration

Top 2022 Workshop 4-9 September 2022

Introduction and overview

 Top quarks decay before hadronisation & lifetime is shorter than decorrelation time

 $e_{\tau}^{+}\mu_{\tau}^{+}\tau_{\tau}^{+}q$ $v_{e}, v_{u}, v_{\tau}, \bar{q}'$

- Spin information passed directly to decay products
- V-A structure of Wtb vertex defines W decay properties
- Extract spin and polarisation information from angular distributions in top quark decays
- In this talk:
 - Overview of $t\bar{t}$ spin/polarisation measurements
 - Single top quark polarisation in the t-channel at 13 TeV
 - Overview of W polarisation measurements
 - W boson polarisation in dilepton $t\bar{t}$ events at 13 TeV

Spin polarisation and correlation in $t\bar{t}$ events

- Top quarks mainly produced as $t\bar{t}$ pairs at the LHC
- Strong interaction conserves parity
 - t and \overline{t} quarks are essentially *unpolarised*

Polarisation observables from spin density matrix of $t\bar{t}$ production at 8 TeV

JHEP 03 (2017) 113

Consistent with NLO QCD and ~0 polarisation

Spin polarisation and correlation in $t\bar{t}$ events

- Top quarks mainly produced as $t\overline{t}$ pairs at the LHC
- Strong interaction conserves parity
 - t and \overline{t} quarks are essentially unpolarised
 - However, the spins of the t and \overline{t} are correlated

4

Correlation observables from spin density matrix of $t\bar{t}$ production at 8 TeV

JHEP 03 (2017) 113

Miriam Watson

ATLAS: Eur. Phys. J. C 80 (2020) 754

Polarisation in single top processes

arXiv:2202.11382 Sub. to JHEP

- t-channel is dominant process for Electroweak single-top production at the LHC
- Top quarks in t-channel are strongly polarised
- Spins aligned with the direction of down-type quarks (V-A coupling in *Wtb* vertex)

Data selection in t-channel

- Single-top selection with 139 fb⁻¹ at 13 TeV
- Uses $t \rightarrow W^+b \rightarrow bI^+v$ (and charge conjugates)
- 1 charged lepton (e/μ), passing trigger $p_T > 30 \text{ GeV}$
- 2 jets, of which 1 b-tagged $p_T > 30 \text{ GeV} (35 \text{ GeV forward})$
- m_T, E_T^{miss} and other kinematic cuts
- QCD background estimated using data-driven methods

6

- Non-b-jet is "spectator" jet:
 - Expect strong polarisation in this direction
 - Define 3 axes in top quark reference frame

arXiv:2202.11382

Extraction of polarisation

- Build angular distributions of unit vector for charged lepton with respect to each axis θ_{li}
 - $i = \{x', y', z'\}$
- Octant Variable Q defines all signal regions, divided by sign of $\cos \theta_{li}$ and lepton charge

$$Q = 4 \cdot \Theta(\cos \theta_{\ell z'}) + 2 \cdot \Theta(\cos \theta_{\ell x'}) + \Theta(\cos \theta_{\ell y'})$$

• Fit Q_+ , Q_- to extract polarisation $\vec{P} = \{P_{x'}, P_{y'}, P_{z'}\}$ for t and \bar{t}

- Binned profile-likelihood fit
- Simulated Protos+Pythia8 templates with fully polarised states used in the fit
- Control regions for $t\bar{t}$, W+jets
- 3 normalisations (t-channel signal, $t\bar{t}$ and W+jets)
- Sensitive to *jet energy resolution*

- Strongly polarized along z'
- P_y, consistent with zero

Parameter	Extracted value	(stat.)
<i>t</i> -channel norm.	$+1.045 \pm 0.022$	(± 0.006)
W+ jets norm.	$+1.148 \pm 0.027$	(± 0.005)
$t\bar{t}$ norm.	$+1.005 \pm 0.016$	(± 0.004)
$P_{x'}^t$	$+0.01 \pm 0.18$	(±0.02)
$P^{ar{t}}_{x'}$	-0.02 ± 0.20	(± 0.03)
$P_{y'}^t$	-0.029 ± 0.027	(± 0.011)
$P^{ar{t}}_{y'}$	-0.007 ± 0.051	(±0.017)
$P_{z'}^t$	$+0.91 \pm 0.10$	(±0.02)
$P_{z'}^{\bar{t}}$	-0.79 ± 0.16	(±0.03)

arXiv:2202.11382

Polarisation values in 2D

- Good agreement with SM prediction to NNLO
- Top quark strongly polarised along spectator quark direction z'
- Top antiquark polarised in opposite direction

Unfolded distributions

- Unfold angular distribution w.r.t. each axis to remove detector and event selection distortions
- Iterative Bayesian unfolding to fiducial particle level
- Differential cross-sections measured for 3 angles for t, t
 and both combined

Bounds on EFT coefficients

- Measurement is sensitive to BSM phenomena affecting tWb vertex
- Unfolded, normalised distributions give bounds on complex Wilson coefficient of dimension-6 operator O_{tW}
- Real C_{tW} mostly affects $P_{x'}$
- Imaginary C_{itW} mostly affects $P_{y'}$
- Simultaneous fit to $\cos \theta_{lx'}$ and $\cos \theta_{ly'}$
- Results are compatible with the SM predictions

Measurements of W boson polarisation

- *Wtb* vertex structure + particle masses define decay properties of W boson from top decay
- W boson spin density matrix determines the angular distribution of the products of the W decay
- Extract W boson "helicity fractions" f_L, f₀, f_R from angular distributions of decay products:
 - Fractions of longitudinal (*f*₀), left-handed (*f*₁), and righthanded (*f*_R) polarisations

Measurements of W boson polarisation

- Consider products of the W leptonic decay $W \rightarrow \ell v$, with $\ell = e$, μ
- Observable $\cos \theta^*$ sensitive to helicity fractions:

$$\frac{1}{\sigma}\frac{d\sigma}{d\cos\theta^*} = \frac{3}{4}(1-\cos^2\theta^*)f_0 + \frac{3}{8}(1-\cos\theta^*)^2f_L + \frac{3}{8}(1+\cos\theta^*)^2f_R$$

θ^{*} is angle between charged lepton and reversed b-quark direction in W rest frame

Polarisation of W bosons at 8 TeV

• ATLAS and CMS $t\bar{t}$ lepton+jets events at $\sqrt{s} = 8$ TeV (~20 fb⁻¹)

JHEP 08 (2020) 51

- CMS single top t-channel events
- Combined result (from W decays to e, μ)
- Consistent with SM predictions to NNLO in perturbative QCD

Polarisation of W bosons at 13 TeV

• ATLAS $t\bar{t}$ dileptonic events at $\sqrt{s} = 13$ TeV, Run 2 (139 fb⁻¹)

ATLAS-CONF-2022-063

New!

- \geq 2 jets and \geq 2 b-tagged jets $p_T > 25 \text{ GeV}$
- 2 opposite-charge leptons p_T > 25 (27) GeV for 2015 (2016-18)
- Z veto and E_T^{miss} cuts on ee, μμ channels
- Neutrino Weighting algorithm used to reconstruct dileptonic $t\overline{t}$

Differential cross-sections

- Absolute and normalised differential distributions in $\cos heta^*$
- Systematic uncertainties from detector and modelling effects
- Good agreement with the NLO prediction from Powheg+Pythia8

Extraction of the helicity fractions

- Fit normalised differential crosssection, minimum χ² method.
- Include full covariance between bins
- Fit with $f_0 = 1 f_L f_R$
- Alternative unitarity constraint: Lagrange Multipliers

 Systematic uncertainty dominates, particularly tt
 modelling and jet
 reconstruction

ATLAS-CONF-2022-063

Extraction of the helicity fractions

- Fit normalised differential crosssection, minimum χ² method.
- Include full covariance between bins
- Fit with $f_0 = 1 f_L f_R$
- Alternative unitarity constraint: Lagrange Multipliers

$$f_0 = 0.684 \pm 0.015 \text{ (stat. + syst.)}$$

$$f_L = 0.318 \pm 0.008 \text{ (stat. + syst.)}$$

$$f_R = -0.002 \pm 0.015 \text{ (stat. + syst.)}$$

ATLAS-CONF-2022-063

$$f_{\rm L}$$
 = 0.311 ± 0.005

Summary

- Angular distributions of the decay products in top decays give access to detailed information on spin and polarisation
- Precise measurements in single-top t-channel decays:
 - Components of polarisation for top and antitop quarks
 - Differential cross-sections
 - Bounds on EFT operators
- Measurement of W boson helicity in dilepton $t\bar{t}$ events:
 - Extraction of 3 helicity fractions
 - Absolute and normalised differential cross-sections
- Complementary top quark spin and polarisation measurements in $t\bar{t}$ decays