

Studies of top quark properties in ATLAS

Tomas Dado (Dortmund) On behalf of the ATLAS Collaboration

TOP 2022, 6th September 2022

Introduction

- Top quarks produced at high energies

 "Small" coupling strength allows precise theory predictions
- Top quarks are produced abundantly at the LHC
 - High statistics analyses

- **Energy asymmetry** in ttbar+jet events
- Charge asymmetry in ttbar events
- Colour reconnection measurement
- Measurement of **b-fragmentation** in ttbar events

<u>Top-quark spin and polarisation measurements presented today by Miriam</u>

Energy asymmetry in ttbar+jet Eur. Phys. J. C 82 (2022) 374

Energy asymmetry - introduction

• Asymmetry between the energies of top and anti-top

$$A_E(\theta_j) \equiv \frac{\sigma^{\text{opt}}(\theta_j | \Delta E > 0) - \sigma^{\text{opt}}(\theta_j | \Delta E < 0)}{\sigma^{\text{opt}}(\theta_j | \Delta E > 0) + \sigma^{\text{opt}}(\theta_j | \Delta E < 0)}$$

$$\sigma^{\text{opt}}(\theta_j) = \sigma(\theta_j | y_{t\bar{t}j} > 0) + \sigma(\pi - \theta_j | y_{t\bar{t}j} < 0)$$

- Using the optimised cross-section
- Measured in **ttj rest-frame**
- Angle between the jet and z-axis
- Asymmetry increases with increased jet p_T
- LO effect due to the presence of the extra jet
- Sensitive to new physics

Energy asymmetry - measurement

- One isolated electron or muon (27 GeV)
- Large-R jet (delta R = 1.0), 350 GeV, top-tagged with DNN
- **Small-R** (delta R = 0.4) close to the lepton
- Associated jet, 100 GeV, isolated from top-candidates
- At least one small-R b-tag
- MET and MWT cuts to suppress fake leptons

<u>Strategy</u>

- Unfold optimised differential distribution to particle level
- Extract the asymmetry from the unfolded distribution

Energy asymmetry - unfolding

- Using **three regions**, **each** with four **delta energy bins**
- Using **Fully Bayesian Unfolding** to unfold to truth level see the talk from Barbora

0.8

10001

00/-2

1001 july

 $0 \leq \theta_i < \pi/4$

0017

- Systematic uncertainties included in the likelihood 0
- Using MCMC sampling for marginalisation 0
- **Full posterior distribution** Ο

10001

00/-1

(001 ⁽00)

10001

00/-00/-

 $\pi/4 \le \theta_i < 3/5\pi \quad 3/5\pi \le \theta_i \le \pi$

(001 (0)

່ ຈິ∆E [GeV]

- **Statistically dominated**, dominant **systematics** from **ttbar modelling and JER**
- In agreement with the SM prediction from Madgraph

Energy asymmetry - EFT interpretation

C¹_{tq} (TeV/A)² TLAS best fit value х $\overline{s} = 13$ TeV, 139 fb⁻¹ 68% CL 95% CL 2 0 -2 68% CL expected -4 95% CL expected -----2 0 2 4 -4 C_{Oq}^{11} (TeV/ Λ)²

Using **SMEFT** framework

Charge asymmetry in ttbar

See the YSF talk from Barbora!

Charge asymmetry ttbar - introduction

• <u>Central-forward asymmetry at LHC</u> • Proton-proton collider • **Pure NLO effect** • Sensitive to new physics effects $A_{C}^{t\bar{t}} = \frac{N(\Delta|y_{t\bar{t}}| > 0) - N(\Delta|y_{t\bar{t}}| < 0)}{N(\Delta|y_{t\bar{t}}| > 0) + N(\Delta|y_{t\bar{t}}| < 0)}$

10

- Predicted inclusive asymmetry: 0.6% Phys. Rev. D 98, 014003 (2018)
 - Calculated at NNLO (QCD) with NLO EW corrections
- Increased asymmetry in differential bins

Charge asymmetry ttbar - measurement

- Lepton+jets resolved, lepton+jets boosted
 - One lepton, 28 GeV
 - At least one b-tagged small-R jet, 25 GeV
 - At least 4 jets (resolved), large-R jet (boosted) >350 GeV
 - Kinematic reconstruction
 - Permutational BDT
- <u>Dilepton</u>
 - Two leptons, 25(28) GeV
 - At least two **small-R jets**, 25 GeV
 - Z boson veto
 - At least one b-tagged jet
 - Kinematic reconstruction using Neutrino Weighting

Charge asymmetry ttbar

- Using **Fully Bayesian Unfolding** to unfold to parton level
- $A_{tt} = 0.0068 \pm 0.0015$ (stat+syst.). 4.7 sigma from zero asymmetry NNLO QCD + NLO EW ATLAS ---- $C_{tu}^8 = 0.5$ \sqrt{s} = 13 TeV, 139 fb⁻¹ 0.015 $--- C_{tu}^8 = 1.0$ combination single-lepton '_{≒0}0.010⊧ ∀ dilepton 0.005 0.000

Stat limited, dominant systematic uncertainties from ttbar modelling

12

Charge asymmetry ttbar - EFT

- **<u>SMEFT</u>** framework
- Sensitive to blind directions from energy asymmetry

Charge asymmetry ttbar - lepton asymmetry

Measurement of colour reconnection in ttbar events

Available soon See the YSF talk from Shayma

Colour reconnection - introduction

- Important phenomenon for MC generators
- Not simulated from first principles
 - MC: leading-colour approximation
 - Different colour reconnection models
 - Mechanism for re-assigning colour connections between partons
 - Less energy to create particles
 - Larger energy of particles
 - Different particle multiplicities
 - Pythia, Herwig and Sherpa have different models
 - Models need to be constrained from data
- Top quarks
 - Current models include CR before top decays
 - Short lifetime -> top quarks can interact with final state colour fields
 - E.g. top mass uncertainty from CR: 0.2-0.4 (<u>8 TeV I+jets</u>)

reconnection

Colour reconnection - measurement

• <u>Selection</u>

- emu ttbar events
- Two b-tagged jets @70%
- Tight track multiplicity: < 100 tracks
- <u>Strategy</u>

• Unfolding to particle level (IBU)

- Sensitive distributions
 - Charged-particle multiplicity n_{ch}
 - Scalar sum of charged particle p_T
 - Scalar sum of charged particle p_T in n_{ch} bins
- o Objects

Tracks outside of jet

- Both on detector and particle level
- Identified to be most sensitive

Colour reconnection - backgrounds

- Standard event-based backgrounds estimated
- **Track-based backgrounds**
 - **Pile-up** and sec. vertex subtracted stochastically Ο
- **Correction to pileup simulation**
 - Based on impact parameter comparison in MC and data Ο
 - A function of number of interactions and number of tracks 0
 - Range between 0.9 and 1.4 Ο
- **Track reconstruction corrections**

Correct for efficiency in track reconstruction Ο

0.8

Colour reconnection - results 1

- Reasonable agreement for Pythia and Herwig
- Sherpa predicts softer spectrum and more low multiplicities than seen in data
 - Sherpa CR model assumes no colour reconnection

Colour reconnection - results 2

- CR0 model agrees better, none of the models describe data perfectly
- Important to check Underlying Event modelling simultaneously with CR models

Measurement of b-fragmentation in ttbar events

Phys. Rev. D 106 (2022) 032008

b-fragmentation - introduction

- Important for many processes
 - E.g. top mass using soft muons
- b-jets provide <u>clear experimental signature</u> identified via secondary vertices
- Using ttbar emu events to measure b-fragmentation
 - Cannot access quarks using b-hadrons
 - **Only charged particles**/tracks used for b-jets
 - **Lepton** $\mathbf{p}_{\mathbf{T}}$ as a proxy for top quark $\mathbf{p}_{\mathbf{T}}$
 - Initial energy not known, unlike in LEP
- Different observables sensitive to b-fragmentation

$$z_{T,b}^{ch} = \frac{p_{T,b}^{ch}}{p_{T,jet}^{ch}} \quad z_{L,b}^{ch} = \frac{\vec{p}_{b}^{ch} \cdot \vec{p}_{jet}^{ch}}{|p_{jet}^{ch}|^{2}} \quad \rho = \frac{2p_{T,b}^{ch}}{p_{T}^{e} + p_{T}^{\mu}}$$

Unfolding to stable particle (tracks) level
 <u>Using FBU</u>

b-fragmentation - selection

- Electron and muon OS pair, 25(27) GeV
- Exactly two jets, 25 GeV, separated by Delta R > 0.5
- At least one b-tagged jet @70% WP
- <u>b-hadron reconstruction</u>
 - Tight tracks matched to jet

b-fragmentation - results

b-fragmentation - results 2

25

- Large LHC dataset allows to measure top-quarks properties precisely
- Energy and asymmetry measurements in ttbar
 - Still statistically limited!
 - Run 3 dataset can significantly improve the precision
 - EFT interpretations
- <u>Colour reconnection and b-fragmentation</u>
 - Help with better understanding of the MC generators
 - Possibility to improve future hadronisation models
 - Crucial for improving modelling uncertainties that limit many measurements

Check the YSF talks about charge asymmetry and colour reconnection later today!

Charge asymmetry ttbar

Charge asymmetry ttbar

Colour reconnection

b-fragmentation

Generator configuration	$z_{\mathrm{T},b}^{\mathrm{ch}} p$ -value	$z_{\mathrm{L},b}^{\mathrm{ch}} p$ -value	ρ <i>p</i> -value	$n_b^{\rm ch} p$ -value
Powheg+Pythia8 A14	0.24	0.85	0.19	0.98
Powheg+Pythia8 A14 $\alpha_s^{FSR} = 0.139$	0.09	0.33	0.28	0.98
Powheg+Pythia8 A14 $\alpha_s^{FSR} = 0.111$	0.04	0.32	0.07	0.98
Powheg+Pythia8 A14 $r_B = 1.05$	0.09	0.48	0.28	0.98
aMC@NLO+Рутніа 8 А14	0.29	0.92	0.21	0.98
Powheg+Pythia8 Monash	0.13	0.57	0.32	0.97
Powheg+Pythia8 Monash Peterson	0.01	0.02	0.10	0.96
Powheg+Herwig 7.0.4	0.16	0.46	0.11	0.98
Powheg+Herwig 7.1.3	0.23	0.71	0.16	0.96
Sherpa 2.2.1	0.08	0.42	0.53	0.01
Sherpa 2.2.8 $(Z + b\bar{b} \text{ tune})$	0.0005	0.005	0.19	0.48
Sherpa 2.2.8	0.10	0.47	0.11	0.61
Sherpa 2.2.10	0.07	0.53	0.07	0.40

