

Top EFT Fits

Jon S. Wilson on behalf of the ATLAS and CMS Collaborations

Baylor University

15th International Workshop on Top-Quark Physics 6 September 2022

B

- Effective Field Theory (EFT) is a model-independent approach to physics beyond the standard model
- Assume that new physics exists at some scale A beyond the current reach of experiments
- Enumerate all possible terms in the Lagrangian, ordered by their mass dimension
- Multiply terms up to some maximum mass dimension by vector of Wilson coefficients
- SM corresponds to all c_i at zero
- Analyses measure coefficients

The EFT Langrangian

$$\mathcal{L} = \mathcal{L}_{\mathsf{SM}} + \sum_{d=5}^{\infty} \sum_{i} rac{1}{\Lambda^{d-4}} c_i^{(d)} \mathcal{O}_i^{(d)}$$

where *d* is the mass dimension, $c_i^{(d)}$ is a Wilson coefficient, and $\mathcal{O}_i^{(d)}$ is an operator

Historical / other EFTs include

- Fermi's theory of beta decay
- BCS theory of superconductivity
- many others, especially in condensed matter physics

- The EFT most useful for top quark physics at the LHC is the standard model EFT, or SMEFT
- Usually look at dimension-6 operators
 - ► The SM already contains dimension-2 and -4 operators
 - Only one dimension-5 operator exists, which provides neutrino mixing
 - The fun stuff starts at dimension-6
- ▶ Need a useful basis for the vector space of dim-6 Wilson coefficients
- ▶ Most commonly used is "Warsaw basis" [JHEP 10 (2010) 085]
- ▶ 63 total operators, of which 4 produce baryon-number violation
 - Many times more operators when considering all possible flavors
- Other bases sometimes used when more convenient for specific analyses
- For more information about EFT fits beyond the top sector, see the next two talks

- Operators may alter rates/spectra for SM processes directly or via interference (diagrams on left)
- Or allow SM-forbidden processes (below)
- Make precision top measurements and perform searches involving top to constrain top-related WCs

- Assume Wilson coefficients small enough to be perturbative
- ► At leading order in EFT:
 - Scattering amplitudes linear in coefficients
 - Cross sections quadratic in coefficients
 - SMEFT@NLO: NLO in SM, still LO in EFT
- ▶ Produce S_0 , $S_{1,i}$, and $S_{2,ij}$ fit templates
 - ► Total (N+1)(N+2)/2 for N coefficients, per affected process
 - Scale them with coefficients
- But, HEP fit tools use cross sections directly as parameters of interest
 - Assume linear scaling of templates
 - Need modified tools for EFT fits

$$\sigma_{\mathsf{EFT}}\left(\frac{c_i}{\Lambda^2}\right) = S_0 + \sum_i S_{1,i} \frac{c_i}{\Lambda^2} + \sum_{i,j} S_{2,ij} \frac{c_i c_j}{\Lambda^4}$$

- S_0 : SM cross section
- $S_{1,i}$: interference between SM and EFT
- S_{2,ij}: cross section from single EFT operator (for i = j) or interference between EFT operators (for i ≠ j)

Two broad approaches to EFT fits:	
Reinterpretation of unfolded measurements	Fully-simulated EFT throughout analysis
 ✓ Can be done outside experiment ✓ Easier to do combinations ✗ No EFT acceptance effects ✗ No EFT effects on backgrounds 	 ✗Must be done by experiments ✗Combinations more difficult ✓EFT acceptance effects can be included ✓Background effects can be included

CMS: Boosted $t\bar{t}Z/t\bar{t}H$ arXiv:2208.12837

- Measure $t\bar{t}Z/t\bar{t}H$ when $p_T(Z/H)$ is large
- EFT effects more pronounced at high $p_T(Z/H)$
- Fully-simulated EFT effects on signal and $t\bar{t} + b\bar{b}$ background
- See Jan van der Linden's talk from Monday for full details

CMS: Boosted *tTZ/tTH* arXiv

arXiv:2208.12837

- ► Vary the tt̄Z/H signal and tt̄ + bb̄ background as functions of the WCs
- Perform 1-D and 2-D likelihood scans for each WC and pair of WCs
- Consistent with SM (all WCs zero) at 95% CL
- Phase space with highly-boosted Z/H
- Complementary to other analyses
- Comparable sensitivity

J.S. Wilson (Baylor)

ù, c

- No sign of charged lepton flavor violation
- Exclusion in c_{eµtc}-c_{eµtu} plane above and right of curves
- Scalar, vector, and tensor variants contribute differently to production vs. decay
- Near-degeneracy, plus zero interference between *eµtc* and *eµtu*, makes exclusion curves nearly ellipses
 - Sensitive to roughly $c_{e\mu tc}^2 + c_{e\mu tu}^2$
- World's strongest limits on charged lepton flavor violation in top sector

- Measure polarization of *t*-channel single top
- Lepton+jets final state
- ► Unfolded differential cross sections vs. cos θ_{ℓx'}, cos θ_{ℓy'}, and cos θ_{ℓz'}
 - x', y', z' coordinate system based on top quark rest frame
 - ▶ $\theta_{\ell x'}$ angle between lepton and x' direction
- Reinterpret unfolded cos θ_{ℓx'} and cos θ_{ℓy'} as EFT constraints on real c_{tW}, imaginary c_{itW}

For more information, see Miriam Watson's talk this afternoon

- Two analyses measuring boosted $t\bar{t}$ differential cross sections:
 - ▶ Lepton+jets [JHEP 06 (2022) 063]
 - All-hadronic [arXiv:2205.02817]
- Unfold differential cross section to parton level
- Several kinematic variables measured
- Top quark p_T used for EFT constraints
 - ▶ p_T of the hadronic top in lepton+jets analysis
 - p_T of leading top in all-hadronic analysis
- EFT constraints as reinterpretations of unfolded differential cross sections
- Covered in more detail on Monday by Peter Hansen; see also poster by Jonathan Jamieson

ATLAS: differential boosted $t\bar{t}$

JHEP 06 (2022) 063; arXiv:2205.02817

Consistent with SM at 68% CL

- $t\bar{t}\gamma$ production in dilepton final state
- Measure differential cross section as function of p_T(γ)
- See Jan van der Linden's talk from Monday for full details
- Fully-simulated EFT effects on $t\bar{t}\gamma$

- Differential cross section used to constrain Wilson coefficients c_{tZ} and c^I_{tZ}
- WCs $c_{t\gamma}$ and $c_{t\gamma}^{I}$ also explored, but are degenerate with c_{tZ}/c_{tZ}^{I} in this analysis
- 1-D and 2-D likelihood scans; showing 2-D scan here
- Combine result with JHEP 12 (2021) 180: $t\bar{t}\gamma$ in lepton+jets final state
- Results consistent with the SM

- Differential cross section used to constrain Wilson coefficients c_{tZ} and c^I_{tZ}
- WCs $c_{t\gamma}$ and $c_{t\gamma}^{I}$ also explored, but are degenerate with c_{tZ}/c_{tZ}^{I} in this analysis
- 1-D and 2-D likelihood scans; showing 2-D scan here
- Combine result with JHEP 12 (2021) 180: tt
 γ in lepton+jets final state
- Results consistent with the SM

- Measure top asymmetries:
 - ► $t\bar{t}$ Rapidity asym. $A_C^{t\bar{t}} \equiv A(|y_t| |y_{\bar{t}}|)$: [arXiv:2208.12095]
 - $t\bar{t}j$ Energy asym. $A_E \equiv A(E_t E_{\bar{t}})$: [EPJC 82 (2022) 374]

Where

$$A(X) = \frac{N(X > 0) - N(X < 0)}{N(X > 0) + N(X < 0)}$$

Unfold:

- ► $A_C^{t\bar{t}}$ vs. $m_{t\bar{t}}$
- A_E vs. angle of additional jet θ_j
- Constrain fifteen (A^{tt̄}_C) or six (A_E) coefficients by reinterpreting unfolded double-differential cross sections

 See talk by Barbora Eckerova this afternoon for more details

ATLAS: *tī* asymmetry

arXiv:2208.12095; EPJC 82 (2022) 374

 C_{IG} $C_{Qq}^{1,8}$ $C_{Qq}^{3,8}$ $C_{Qq}^{1,1}$ $C_{Qq}^{3,1}$ C_{tu}^8 C_{td}^8 C_{tq}^8 $C_{O_{11}}^8$ C_{Qd}^{8} C_{μ}^1 C_{td}^1 C_{ta}^1 C_{Qu}^1 C_{Qd}^1

ATLAS √s = 13 TeV, 139 fb⁻ Act vs. NNLO QCD + NLO EW Differential m., - 68% CL $- \Lambda^{-2} + \Lambda^{-4}$ ---- 95% CL Best-fit value -----the second second second C/Λ^2 [TeV⁻²]

 Coefficient constraints from A^{tt̄}_C vs. m_{tt̄} (left)

- Compared to A_E coefficient constraints (right)
 - $A_C^{t\bar{t}}$ in red
 - \blacktriangleright A_E in blue
- ► $A_C^{t\bar{t}}$, A_E complement nicely
- ► A_E requires additional jet
 - QCD structure different, so different EFT effects
- Shows importance of EFT combinations

ATLAS+CMS Preliminary June 2022 LHCtopWG Following arXiv:1802.07237 Four-fermion operators - Individual limits Dimension 6 operators * Preliminary - ATLAS - CMS ATLAS+CMS $\tilde{C} = C / \Lambda^2$ CMS. 4 top quarks [1] 36 fb⁻¹ CMS 4 ton murks [1] 26 (b) CMS. 4 top quarks [1] 36 fb⁻¹ CMS 4 ton anarks [1] 26 (b) CMS, tf+Z/W/H, tZq,tHq [2] 42 fb⁻¹ CMS ##Z/W/H (Zo (Ho (2) 42.643 CMS. fl+Z/W/H. tZa.tHa [2] 42 fb⁻¹ CMS. tl+Z/W/H. tZa.tHa [2] 42 fb⁻¹ CMS. ff+Z/W/H. tZa.tHa [2] 42.641 CMS. #+Z/W/H, tZq.tHq [2] 42.051 CMS, tl+Z/W/H, tZq.tHq [2] 42 fb⁻¹ ATLAS, if energy asymmetry [3] 139.65 ATLAS, if all-hadronic boosted [4] 120.0-1 ATLAS if energy asymmetry [3] 110.0.1 ATLAS, if energy asymmetry [3] 139 fb⁻¹ ATLAS, tf 1+iets boosted [5] 139 fb⁻¹ ATLAS, if all-hadronic boosted [4] 139 fb ATLAS, if energy asymmetry [3] 139.65 ATLAS, if energy asymmetry [3] 139 fb⁻¹ ATLAS, if all-hadronic boosted [4] 120.0-ATLAS if operaty asymptotry [3] 120 @ ATLAS, if all-hadronic boosted [4] 139 fb ATLAS, if all-hadronic boosted [4] 139 fb ATLAS, if all-hadronic boosted [4] 139 fb **C**³⁸ ATLAS. if all-hadronic boosted [4] 139 fb⁻¹ [1] IMEP 11 (2019) 06 [2] JHEP 03 (2021) 095 [7] EPPC 82 (2022) 374 10 _10 -5 95% CL limit [TeV-2]

- EFT is a powerful tool for studying the dynamics of the top sector and searching for new physics
- Many strategies/techniques for EFT fits
- Combinations of complementary analyses crucial for future sensitivity to possible new physics
- CMS and ATLAS producing wide range of top EFT fits
 - ► Boosted $t\bar{t}Z/H$
 - SM-forbidden processes: charged-lepton flavor violation and flavor-changing neutral currents
 - Differential cross sections for $t\bar{t}\gamma$ and $t\bar{t}$
 - Polarization of single top
 - Charge and energy asymmetry of $t\bar{t}$

Top EFT summary plots

₽

(Top) guark - vector boson operators - Individual limits		Following arXiv:1802.07237 Dimension 6 operators		
- ATLAS	- CMS	ATLAS+CMS	$\tilde{C}_{j} \equiv C_{j} / \Lambda^{2}$ * Pr	eliminary
ĉ _a			CMS, iZqHZ [1] CMS, iTr [2] CMS, iZ [3] CMS, iZ [3] CMS, iZ-2WH, iZa iHa [4]	138 fb ⁻¹ 137 fb ⁻¹ 78 fb ⁻¹
č.			CMS, ify [2] CMS & Z [3]	42 10 ***********************************
č.			ATLAS. #Z [5]	35 (b)*
Ĉ _w			ATLAS, Top polarization [6] ATLAS, #2 [5] ATLAS, #2 [5] CMS, i2q:82 [1] CMS, i2q:82 [1] CMS, if and iW, BSM search [8] CMS, if -2WB1 (22):181 [4]	139 fb ⁻¹ 36 fb ⁻¹ 20+20 f 138 fb ⁻¹ 36 fb ⁻¹
õ ⁿ			ATLAS, Top polarization [6]	42 ID *
Č _m			CMS, if+2/W/H, iZq,iHq [4]	42 fb ⁻¹
Ĉ _{ia} ∕g			ATLAS, # 1+jets boosted [9]	139 fb
Ĉ _{io}	_ 7_		CMS, if and (W, BSM search [8] CMS, if spin correlations [10] CMS, if+Z/W/H, tZq,Hq [4]	36 fb ⁻¹ 36 fb ⁻¹ 42 fb ⁻¹
Ĉ [∥]	-		CMS, if spin correlations [10]	36 fb ⁻¹
(Č_w)+Č_0)	-		ATLAS, FCNC seg [11]	139 fb
(Č_w + Č_a)	-		ATLAS, FCNC seg [11]	139 fb
$ \tilde{C}_{_{WW}}^{(21)}+\tilde{C}_{_{SB}}^{(21)} $	•		ATLAS, FCNC seg [11]	139 fb
($\tilde{C}_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_$	•		ATLAS, FCNC seg [11]	139 fb
(C ³² ,)	-		ATLAS, FCNC (Zq [12]	139 fb
(C ³²)	-		ATLAS, FCNC (Zq [12]	139 fb
č ²³ _{vw} •	-		ATLAS, FCNC (Zq [12]	139 fb
Č ²³ *	-		ATLAS, FCNC (Zq [12]	139 fb
(č ^{**} _{vw})	-		ATLAS, FCNC (Zq [12]	139 fb
Č ²¹ ₄₈	-		ATLAS, FCNC (Zq [12]	139 fb
(C ^{*3} *)	•		ATLAS, FCNC (Zq [12]	139 fb
(C ¹³ +)	•		ATLAS, FCNC (Zq [12]	139 fb
اڭ _{ەڭ} ا	-		ATLAS, FCNC tog [13] CMS, fl and (W, BSM search [8]	139 fb ⁻¹ 36 fb ⁻¹
Č _{ob}	BP 12 (3021) (40) BP 12 (3021) (41) BP 05 (3022) (44) BP 05 (3022) (46) D 49 (3009) (52) BP 05 (3021) (48) D 49 (3009) (41)	[0] #FEC 7%(2019) 888 [0] #SN-2013 13154 [0] #SN-2013 13154 [0] #SN-2014 03159 (2014) [0] #SN-2014 03157 [0] #SN-2014 03153 884 [0] #SN-2014 03153 884	ATLAS, FCNC sag [13] CMS, fi and fW, BSM search [8] EFT foundies is sequenced at different experimental analysis.	139 fb ⁻¹ 36 fb ⁻¹

J.S. Wilson (Baylor)

Top EFT Fit

Backup: ATLAS FCNC

ATLAS: FCNC *tHq* and $t\gamma q$ arXiv:2208.11415; arXiv:2205.02537

- Search for flavor-changing neutral currents in two analyses:
 - *tHq* vertex, decay only, $H \rightarrow \tau \tau$ [arXiv:2208.11415]
 - $t\gamma q$ vertex, production and decay [arXiv:2205.02537]
- SM-forbidden processes
- Fully-simulated EFT signals
- Both analyses use multivariate analyses
- Backgrounds constrained using control regions
- See Wednesday talk by Lucio Cerrito for more details

tŤ

Other MC

J.S. Wilson (Baylor)

Events

102

10

10-

Data/Pred 1

0.5

ATLAS

√s=13 TeV.139 fb⁻¹

FCNC tcH $H \rightarrow \tau^+ \tau^-$

- Constraints on $c_{c\phi}$ and $c_{u\phi}$
- Excluded region is above/right of curves
- Modest excess, local significance 2.3σ

 $t\gamma q$ search:

- Constraints on linear combinations of pairs of FCNC operators
- Excluded region to the right

Backup: Boosted $t\bar{t}Z/H$

Boosted $t\bar{t}Z/H$

NN trained to distinguish $t\bar{t}Z/H$ from backgrounds

NN score, Z/H jet mass, and $p_T(Z/H)$ \blacktriangleright $p_T(Z/H)$ provides EFT sensitivity NN score provides a high-purity region Z/H jet mass provides sidebands to help

Divide events among bins as functions of

Boosted $t\bar{t}Z/H$

- Showing 2016 data as an example
- ► fit to all three years simultaneously
- ▶ 3 large groups: $p_T(Z/H)$ bins

- ► 6 medium subgroups: NN bins
- Individual bins: Z/H jet mass bins
- ▶ Use this, plus 2017/18, to constrain WCs

J.S. Wilson (Baylor)

Top EFT Fits

Operator	Definition	WC
$O_{\mathbf{u}\varphi}^{(ij)}$	$\overline{\mathbf{q}}_{i}\mathbf{u}_{j}\widetilde{\varphi}(\varphi^{\dagger}\varphi)$	$c_{\mathrm{t}arphi} + ic_{\mathrm{t}arphi}^{I}$
$O_{arphi \mathrm{q}}^{1(ij)}$	$(\varphi^{\dagger} \overleftrightarrow{D}_{\mu} \varphi) (\overline{\mathbf{q}}_{i} \gamma^{\mu} \mathbf{q}_{j})$	$c_{\varphi Q}^- + c_{\varphi Q}^{\dot{3}}$
$O^{3(ij)}_{arphi \mathrm{q}}$	$(\varphi^{\dagger} \overleftrightarrow{iD}_{\mu}^{I} \varphi) (\overline{\mathrm{q}}_{i} \gamma^{\mu} \tau^{I} \mathrm{q}_{j})$	$c_{\varphi Q}^3$
$O^{(ij)}_{arphi \mathrm{u}}$	$(\varphi^{\dagger} \overleftrightarrow{iD}_{\mu} \varphi) (\overline{\mathbf{u}}_i \gamma^{\mu} \mathbf{u}_j)$	$C_{\varphi t}$
${}^{\dagger}O^{(ij)}_{\varphi ud}$	$(ilde{arphi}^{\dagger}iD_{\mu}arphi)(\overline{\mathrm{u}}_{i}\gamma^{\mu}\mathrm{d}_{j})$	$c_{arphi ext{tb}} + i c_{arphi ext{tb}}^{I}$
${}^{\ddagger}O_{\mathbf{uW}}^{(ij)}$	$(\overline{\mathrm{q}}_i \sigma^{\mu u} au^I \mathrm{u}_j) ilde{arphi} \mathrm{W}^I_{\mu u}$	$c_{\mathrm{tW}} + i c_{\mathrm{tW}}^{I}$
$O_{ m dW}^{(ij)}$	$(\overline{\mathbf{q}}_i \sigma^{\mu u} \tau^I \mathbf{d}_j) \ \mathbf{\phi} \mathbf{W}^I_{\mu u}$	$c_{ m bW}+ic^{I}_{ m bW}$
$^{\ddagger}O_{\mathrm{uB}}^{(ij)}$	$(\overline{\mathbf{q}}_i \sigma^{\mu u} \mathbf{u}_j) \tilde{\varphi} \mathbf{B}_{\mu u}$	$(\mathcal{C}_{\mathrm{W}}c_{\mathrm{tW}} - c_{\mathrm{tZ}})/\mathcal{S}_{\mathrm{W}} + i(\mathcal{C}_{\mathrm{W}}c_{\mathrm{tW}}^{I} - c_{\mathrm{tZ}}^{I})/\mathcal{S}_{\mathrm{W}}$

Missing transverse momentum	$p_{\mathrm{T}}^{\mathrm{miss}} > 20\mathrm{GeV}$
	$p_{\rm T}({\rm e}) > 30 \ (35 {\rm GeV})$ in 2016 (2017 and 2018)
=1 electron or muon	$p_{\mathrm{T}}(\mu) > 30 \mathrm{GeV}$
	$ \eta(\mathbf{e}) < 2.5, \eta(\mu) < 2.4$
\geq 1 AK8 jet	$p_{ m T} > 200 { m GeV}, \eta < 2.4$
	$50 < m_{\rm SD} < 200 { m GeV}$
=1 Z or Higgs boson candidate AK8 jet	Highest $b\overline{b}$ tagger score (>0.8)
\geq 5 AK4 jets (may overlap AK8 jet)	$p_{\rm T} > 30 {\rm GeV}, \eta < 2.4$
>2h taggad AK4 into	Satisfy medium DeepCSV b-tag requirements
≥2 D-tagged AN4 jets	$\Delta R(Z \text{ or Higgs boson candidate AK8 jet}) > 0.8$
≥1 AK8 jet =1 Z or Higgs boson candidate AK8 jet ≥5 AK4 jets (may overlap AK8 jet) ≥2 b-tagged AK4 jets	$\begin{split} \eta(\mathbf{e}) &< 2.5, \eta(\mu) < 2.4\\ p_{\mathrm{T}} > 200 \mathrm{GeV}, \eta < 2.4\\ 50 &< m_{\mathrm{SD}} < 200 \mathrm{GeV}\\ \mathrm{Highest b\bar{b} tagger score} (>0.8)\\ p_{\mathrm{T}} > 30 \mathrm{GeV}, \eta < 2.4\\ \mathrm{Satisfy medium DeepCSV b-tag requirements}\\ \Delta R(Z \mathrm{or Higgs boson candidate AK8 jet}) > 0.8 \end{split}$

Jet mass

J.S. Wilson (Baylor)

₿ı

J.S. Wilson (Baylor)

₿ī

Signal strength	Observed $\pm 1\sigma$	Stat.	MC Stat.	Experiment	Theory	Expected $\pm 1\sigma$
$\mu_{{ m t}ar{{ m t}}Z}$	$0.65\substack{+1.05 \\ -0.98}$	$^{+0.80}_{-0.76}$	$^{+0.37}_{-0.38}$	$^{+0.38}_{-0.31}$	$\substack{+0.42\\-0.38}$	$1.00\substack{+0.92 \\ -0.84}$
$\mu_{t\bar{t}H}$	$-0.33\substack{+0.87\\-0.85}$	$^{+0.72}_{-0.65}$	$^{+0.32}_{-0.34}$	$\substack{+0.19\\-0.17}$	$^{+0.30}_{-0.38}$	$1.00\substack{+0.79 \\ -0.73}$

Source of uncertainty	$\Delta \mu_{t\bar{t}Z}$	$\Delta \mu_{t\bar{t}H}$
$t\bar{t} + c\bar{c}$ cross section	$^{+0.24}_{-0.22}$	$^{+0.17}_{-0.16}$
$t\bar{t}+b\overline{b}\ cross\ section$	$\substack{+0.17\\-0.23}$	$^{+0.15}_{-0.22}$
$t\bar{t} + 2b$ cross section	$^{+0.03}_{-0.03}$	$^{\mathrm +0.10}_{\mathrm -0.10}$
$\mu_{ m R}$ and $\mu_{ m F}$ scales	$\substack{+0.19\\-0.14}$	$\substack{+0.10\\-0.16}$
Parton shower	$^{\mathrm +0.15}_{\mathrm -0.16}$	$^{+0.06}_{-0.05}$
Top quark p_{T} modeling in t $\overline{\mathrm{t}}$	$^{+0.01}_{-0.01}$	$\substack{+0.11\\-0.13}$
b-tag efficiency	$^{+0.25}_{-0.13}$	$^{\mathrm{+0.10}}_{\mathrm{-0.11}}$
bb-tag efficiency	$\substack{+0.17\\-0.12}$	$^{+0.04}_{-0.03}$
Jet energy scale and resolution	$\substack{+0.11\\-0.10}$	$^{+0.11}_{-0.12}$
Jet mass scale and resolution	$^{+0.10}_{-0.11}$	$^{+0.08}_{-0.08}$

Boosted $t\bar{t}Z/H$ diff XS limits CMS 138 fb⁻¹ (13 TeV) Cross section [fb] SM tīZ 95% CL upper limits - Obs. 68% exp. 10³ ---- Median exp. 95% exp. 10² 10¹ Limit / SM 10¹ 10⁰ 200 300 450 ∞ Simulated p_T^Z [GeV]

J.S. Wilson (Baylor)

₿ī

Signal	$p_{\rm T}^{{ m Z/H}}$ (GeV) interval	95% CL upper limit (fb)	95% CL upper limit / SM
tĪZ	(200, 300]	$359~(492^{+216}_{-143})$	$3.42(4.69^{+2.06}_{-1.36})$
	(300, 450]	$208\;(135^{+58}_{-39})$	$4.88\ (3.17^{+1.37}_{-0.91})$
	(450,∞)	$49.1\ (50.7^{+23.0}_{-15.4})$	$4.02~(4.16^{+1.89}_{-1.26})$
tīH	(200, 300]	418 (736 ⁺²⁹⁶)	$8.02 \ (14.1^{+5.7}_{-4.0})$
	(300, 450]	$59.9\;(47.3^{+20.5}_{-13.9})$	$3.24~(2.55^{+1.11}_{-0.75})$
	(450,∞)	$9.78\ (16.5^{+7.4}_{-4.9})$	$1.96\;(3.30^{+1.49}_{-0.98})$

Boosted $t\bar{t}Z/H$

WC summary

WC/Λ^2 [TeV ⁻²]	95% CL interval (others profiled)	95% CL interval (others fixed to SM)
$c_{\mathrm{t} \varphi}$	[0.70, 29.42]	[0.31, 29.94]
$c^{\varphi Q}$	[-6.71, 7.72]	[-4.77, 5.54]
$c_{\varphi Q}^3$	[-4.01, 3.61]	[-3.86, 2.90]
Cφt	[-10.91, 7.42]	[-8.32, 5.34]
$c_{\varphi tb}$	[-9.39, 10.65]	[-9.39, 10.12]
c_{tW}	[-1.56, 1.44]	[-1.02, 0.92]
$c_{\rm bW}$	[-4.60, 4.57]	[-4.54, 4.47]
c_{tZ}	[-1.53, 1.46]	[-0.99, 1.00]

₿ı

₿ī

Boosted $t\bar{t}Z/H$ NN

NN variables

Vame	Description
t system	
p _T	p_T of the leading (subleading) b jet
score	DeepCSV score of the leading (subleading) b jet
Pr .	p _T of the leading (subleading) non-b jet
score	DeepCSV score of the leading (subleading) non-b jet
AR(b, q)	minimum ΔR between the leading (subleading) b jet and any non-b jet
$\Delta R(\mathbf{q}, \mathbf{q})$	ΔR between the non-b jets closest and next-to-closest to the leading (sub-
4	leading) b jet
u(q+q)	invariant mass of the non-b jets closest and next-to-closest to the leading (subleading) b jet
AR(b, q + q)	ΔR between the leading (subleading) b jet and the sum of the nearest
	and next-to-nearest non-b jets
u(b+q+q)	invariant mass of the leading (subleading) b jet and the nearest and next-
	to-nearest non-b jets
R(Z/H, b + q + q)	ΔR between the Z/H boson candidate and the sum of the leading (sub-
	leading) b jet and the non-b jets nearest and next-to-nearest to the lead-
	ing (subleading) b jet
$R(Z/H, b + b + q + q + \ell)$	$\Delta \bar{R}$ between the Z/H boson candidate and the sum of the leading and
	subleading b jets, the non-b jets nearest and next-to-nearest to the lead-
	ing (subleading) b jet, and the lepton
$t_T(b + \ell + \vec{p}_T^{miss})$	transverse mass of the subleading b jet, the lepton, and \vec{p}_T^{miss}
i(Z/H + b)	invariant mass of the Z/H boson candidate and the nearest b jet
t(b+b)	invariant mass of the leading and subleading b jets
R(b,b)	ΔR between the leading and subleading b jets
R(Z/H,q)	ΔR between the Z/H boson candidate and the leading non-b jet
R(Z/H,b)	ΔR between the Z/H boson candidate and the leading b jet
$R(Z/H, \ell)$	ΔR between Z/H boson candidate and the lepton
$l(Z/H + \ell)$	invariant mass of the Z/H boson candidate and the lepton
<i>R</i> (b, ℓ)	ΔR between the leading (subleading) b jet and the lepton
$t(\mathbf{b} + \ell)$	invariant mass of the leading (subleading) b jet and the lepton
((bout))	number of b jets outside the Z/H boson candidate cone ($\Delta R > 0.8$)
(qout)	number of non-b iets outside the Z/H boson candiate cone ($\Delta R > 0.8$)
vent topology	
(AK8 jets)	number of AK8 iets including the Z/H boson candidate
(AK4 jets)	number of AK4 iets
$I(\mathbf{Z}/\mathbf{H})$	number of AK8 jets with a minimum AK8 bb tagger score of 0.8
K8 mer	maximum men of AK8 jets excluding the Z/H boson candidate
Iv(bout)	H_T of the b jets outside the Z/H boson candidate cone ($\Delta R > 0.8$)
Tr(bout, Gout, l)	$H_{\rm T}$ of all AK4 jets outside the Z/H boson candidate cone ($\Delta R > 0.8$) and
Cour pour /	the lepton
phericity	sphericity calculated from the AK4 jets and the lepton [?]
planarity	aplanarity calculated from the AK4 jets and the lepton [?]
/H boson candidate substru	icture
in score	maximum (minimum) DeepCSV score of AK4 jets within the Z/H boson
III OCOLO	candidate cone ($\Delta R \le 0.8$)
R(b _m , b _{ma})	ΔR between a biet within the Z/H boson candidate cone ($\Delta R \le 0.8$) and
(-m/-out/	the leading b jet outside of the Z/H boson candidate cone (AR ≥ 0.8)
J(b _b)	number of h jots within the Z/H boson candidate cone (AR ≤ 0.8)
J(a _m)	number of p peak within the Z/H boson candidate cone ($\Delta R \le 0.8$)
/H bb coore	AK8 bh tagger score of the Z/H becon candidate
	CONCLUMENT STORE OF OUR ACCOUNTSOIL CALIFORNIA

Backup: $t\overline{t}\gamma$

 $t\bar{t}\gamma$

$t\bar{t}\gamma$ 138 fb⁻¹ (13 TeV)

138 fb⁻¹ (13 TeV)

1.2 1.4 $\ln(\gamma)$

138 fb⁻¹(13 TeV)

Other+

Otherty

Other+v

Kinematic plots signal region

J.S. Wilson (Baylor)

p_(j_) [GeV]

Kinematic plots signal region

3

 $\Delta \alpha(\ell \ell)$

J.S. Wilson (Baylor)

 $t\bar{t}\gamma$

Kinematic plots: Z gamma region 138 fb⁻¹ (13 TeV)

60

Other+v

Nonprompt y

2j,2b

Syst. uncertainty

≥3j,2b

70 80

138 fb⁻¹ (13 TeV)

m({{}) [GeV]

J.S. Wilson (Baylor)

 $t\bar{t}\gamma$

photon pT in signal region

 $t\bar{t}\gamma$

J.S. Wilson (Baylor)

₿ī

J.S. Wilson (Baylor)

₿ı

$t\bar{t}\gamma$ Diff. cross sections

3.5

200

Diff. cross sections

 $t\bar{t}\gamma$

1D WC scans

 $t\bar{t}\gamma$

Process Cross section normalization		Event generator	Perturbative order in QCD
$tar{t}\gamma$	NLO	MadGraph5_amc@nlo	LO
Z+jets	NNLO [49]	MadGraph5_amc@nlo	LO
Zγ, Wγ, VV, VVV, tŧ̄V, tZq, tWZ, tHq, tHW, tŧ̄VV, tŧ̄tī	NLO	MadGraph5_amc@nlo	NLO
tī	NNLO+NNLL [50]	POWHEG	NLO
single t (t channel)	NLO [51, 52]	POWHEG	NLO
single t (s channel)	NLO [51, 52]	MadGraph5_amc@nlo	NLO
tW	NNLO [53]	POWHEG	NLO
tīH	NLO	POWHEG	NLO
gg ightarrow ZZ	LO	MCFM	LO

Leptons	Photons	Jets	b jets	Events
$p_{\rm T} > 25 \ (15) { m GeV}$	$p_{\rm T}>20{ m GeV}$	$p_{\rm T} > 30 { m GeV}$	$p_{\rm T} > 30 {\rm GeV}$	$N_\ell = 2$ (OC)
$ \eta < 2.4$	$ \eta < 1.44$	$ \eta < 2.4$	$ \eta < 2.4$	$N_{\gamma}=1$
	$\Delta R(\gamma,\ell) > 0.4$	$\Delta R(\text{jet}, \ell) > 0.4$	$\Delta R(ext{jet}, \ell) > 0.4$	$N_{ m b} \geq 1$
	isolated	$\Delta R(\text{jet}, \gamma) > 0.1$	$\Delta R(\operatorname{jet}, \gamma) > 0.1$	$m(\ell\ell) > 20 \mathrm{GeV}$
		matched to b hadron		

 $tar{t}\gamma$

	Course	Correlation	Uncertaint	y [%]
	Source	Correlation	Prefit range	Postfit
	Integrated luminosity	\sim	1.3-3.2	1.7
	Pileup	\checkmark	0.1 - 1.4	0.7
Experimental	Trigger efficiency	×	0.6 - 1.7	0.6
ntal	Electron selection efficiency	\sim	1.0-1.3	1.0
mei	Muon selection efficiency	\sim	0.3-0.5	0.5
)eri	Photon selection efficiency	\sim	0.4-3.6	1.1
Exp	Electron & photon energy	\checkmark	0.0 - 1.1	0.1
	Jet energy scale	\sim	0.1 - 1.3	0.5
	Jet energy resolution	\checkmark	0.0-0.6	< 0.1
	b tagging efficiency	\sim	0.9 - 1.4	1.1
	L1 prefiring	\checkmark	0.0-0.8	0.3
	Values of $\mu_{\rm F}$ and $\mu_{\rm R}$	\checkmark	0.3-3.5	1.3
cal	PDF choice	\checkmark	0.3 - 4.5	0.3
reti	PS modelling: ISR & FSR scale	\checkmark	0.3-3.5	1.3
leoi	PS modelling: colour reconnection	\checkmark	0.0 - 8.4	0.2
Ē	PS modelling: b fragmentation	\checkmark	0.0-2.2	0.7
	Underlying-event tune	\checkmark	0.5	0.5
ч	$Z\gamma$ correction & normalization	\checkmark	0.0-0.2	0.1
n	t γ normalization	\checkmark	0.0-0.9	0.8
gn	Other+ γ normalization	\checkmark	0.3-1.0	0.8
ack	Nonprompt γ normalization	\checkmark	0.0 - 1.8	0.7
ш	Size of simulated samples	×	1.5-7.6	0.9
	Total systematic uncertainty			3.6
	Statistical uncertainty			1.4
	Total uncertainty			3.9

Symbol Definition

- $p_{\mathrm{T}}(\gamma)$ Transverse momentum of the photon
- $|\eta|(\gamma)$ Absolute value of the pseudorapidity of the photon
- min $\Delta R(\gamma, \ell)$ Angular separation between the photon and the closest lepton
 - $\Delta R(\gamma, \ell_1)$ Angular separation between the photon and the leading lepton
 - $\Delta R(\gamma, \ell_2)$ Angular separation between the photon and the subleading lepton
- min $\Delta R(\gamma, b)$ Angular separation between the photon and the closest b jet
 - $|\Delta\eta(\ell\ell)|$ Pseudorapidity difference between the two leptons
 - $\Delta \varphi(\ell \ell)$ Azimuthal angle difference between the two leptons
 - $p_{\mathrm{T}}(\ell \ell)$ Transverse momentum of the dilepton system
- $p_{\mathrm{T}}(\ell_1) + p_{\mathrm{T}}(\ell_2)$ Scalar sum of the transverse momenta of the two leptons
 - $\begin{array}{ll} \min \Delta R(\ell,j) & \text{Smallest angular separation between any of the selected leptons and jets} \\ p_{\mathrm{T}}(\mathbf{j}_1) & \text{Transverse momentum of the leading jet} \end{array}$

 $t\bar{t}\gamma$ WC constraints

			Dilepton result		Dilepton & ℓ +jets combination		
	Wils	on coefficient	68% CL interval	95% CL interval	68% CL interval	95% CL interval	
			$[(\Lambda/\text{TeV})^2]$	$[(\Lambda/\text{TeV})^2]$	$[(\Lambda/\text{TeV})^2]$	$[(\Lambda/\text{TeV})^2]$	
q	0 -	$c_{\mathrm{tZ}}^{\mathrm{I}}=0$	[-0.28, 0.35]	[-0.42, 0.49]	[-0.15, 0.19]	[-0.25, 0.29]	
ecte	c_{tZ}	profiled	[-0.28, 0.35]	[-0.42, 0.49]	[-0.15, 0.19]	[-0.25, 0.29]	
Expe	J	$c_{\mathrm{tZ}}=0$	[-0.33, 0.30]	[-0.47, 0.45]	[-0.17, 0.18]	[-0.27, 0.27]	
	c_{tZ}	profiled	[-0.33, 0.30]	[-0.47, 0.45]	[-0.18, 0.18]	[-0.27, 0.27]	
p	<u> </u>	$c_{\mathrm{tZ}}^{\mathrm{I}}=0$	[-0.43, -0.09]	[-0.53, 0.52]	[-0.30, -0.13]	[-0.36, 0.31]	
erve	ι _{tZ}	profiled	[-0.43, 0.17]	[-0.53, 0.51]	[-0.30, 0.00]	[-0.36, 0.31]	
Obse Class	c_{tZ}^{I}	$c_{tZ} = 0$	[-0.47, -0.03] $\cup [0.07, 0.38]$	[-0.58, 0.52]	$[-0.32, -0.13] \cup [0.16, 0.29]$	[-0.38, 0.36]	
		profiled	[-0.43, 0.33]	[-0.56, 0.51]	[-0.28, 0.23]	[-0.36, 0.35]	

Backup: Charged lepton flavor violation

	-/

Vertex	Int.	Cross section [fb]		$C_{e\mu tq}/\Lambda^2$ [TeV $^{-2}$]		$B(10^{-6})$	
	type	Exp	Obs	Exp	Obs	Exp	Obs
	Vector	7.02	6.78	0.12	0.12	0.14	0.13
eµtu	Scalar	5.63	6.25	0.23	0.24	0.06	0.07
	Tensor	10.01	9.18	0.07	0.06	0.27	0.25
	Vector	11.21	9.73	0.39	0.37	1.49	1.31
eµtc	Scalar	9.11	8.88	0.87	0.86	0.91	0.89
	Tensor	21.02	17.22	0.24	0.21	3.16	2.59

- No sign of charged lepton flavor violation
- Set limits on cross sections
- Scalar, vector, tensor contribute differently to production vs. decay
- Scalar cross section limits strongest, tensor weakest
- Translate into branching ratio exclusions
- Excluded region above and right of curves

 Near-degeneracy of BDT shapes makes exclusion curves nearly straight lines

Charged lepton flavor violation 138 fb⁻¹ (13 TeV)

euto-Vector × 10

0 1000 1200 1400 p_(leading lepton) [GeV]

138 fb⁻¹ (13 TeV

AR(eu)

138 fb⁻¹ (13 TeV)

p________[GeV]

Othe

euto-Vector × 10

Kinematic plots

Charged lepton flavor violation

Kinematic plots

J.S. Wilson (Baylor)

Charged lepton flavor violation

BDT outputs

J.S. Wilson (Baylor)

Charged lepton flavor violation

Event yields

Chan	nel		1 b tagged	> 1 b tagged	
tī			477800 ± 7900	265000 ± 7100	
tW			49100 ± 1300	7710 ± 250	
Other			7950 ± 670	850 ± 70	
Total background prediction			534900 ± 8000	273600 ± 7100	
Data			537236	268781	
eμtu	Vector	t decay	604 ± 2	45.2 ± 0.4	
		t production	17103 ± 29	1557 ± 9	
	Scalar	t decay	78.2 ± 0.2	6.1 ± 0.1	
		t production	3670 ± 6	336 ± 2	
	Tensor	t decay	3499 ± 9	266 ± 2	
		t production	61011 ± 107	5567 ± 33	
eµtc	Vector	t decay	596 ± 2	90.4 ± 0.5	
		t production	1711 ± 3	166 ± 1	
	Scalar	t decay	77.7 ± 0.2	11.4 ± 0.1	
		t production	294 ± 1	28.5 ± 0.2	
	Tensor	t decay	3467 ± 8	534 ± 3	
		t production	6329 ± 13	621 ± 4	

Charged lepton flavor violati	ion S _l	ystematics	
Source	tī (%)	CLFV signal	
		decay (%)	production (%)
Trigger	1.2	1.2	2.9
Electron identification and isolation	1.6	1.6	3.9
Muon identification and isolation	0.6	0.6	0.7
Electron energy scale and resolution	< 0.1	< 0.1	< 0.1
Muon momentum scale and resolution	< 0.1	< 0.1	< 0.1
Jet energy scale and resolution	2.5	2.1	1.2
b tagging	3.1	3.9	4.5
Pileup	0.3	0.3	0.2
ME scale	0.9	0.8	0.7
ISR/FSR scale	1.5	2.9	1.9
PDF	0.8	0.8	0.9
UE tune	0.4		—
ME/PS matching	< 0.1		—
Color reconnection	1.0		—
MC statistical	< 0.1	< 0.1	< 0.1

J.S. Wilson (Baylor)

B