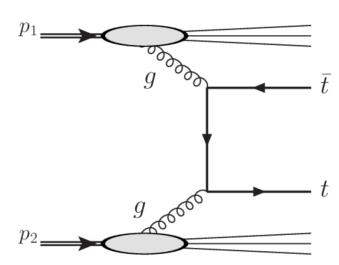
The 15th International Workshop on Top Quark Physics

# Searching for anomalous top quark interactions with proton tagging and timing detectors at the LHC

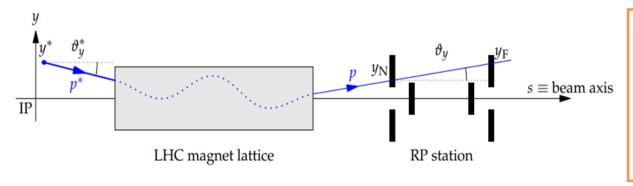
*07 September 2022* 


Cristian Baldenegro, Andrea Bellora, Sylvain Fichet, Gero von Gersdorff, <u>Michael Pitt</u>, Christophe Royon

JHEP 08 (2022) 021

# Introduction - ttbar production at the LHC

- The dominant production of ttbar is via ggF:
  - ttbar produced by QCD interactions
  - Protons dissociate into multiparticle final states
  - A large number of energetic particles are produced (ISR)
- Rarely, top quarks can be produced in Ultra-Peripheral collisions:
  - ttbar produced via photon fusion
  - Low track activity due to exchange of color singlets
  - Protons could remain intact
  - LHC works as a photon collider


 $p_1 \longrightarrow p'_1$   $\gamma \longrightarrow \overline{t}$   $\gamma \longrightarrow t$  $p_2 \longrightarrow p'_2$ 

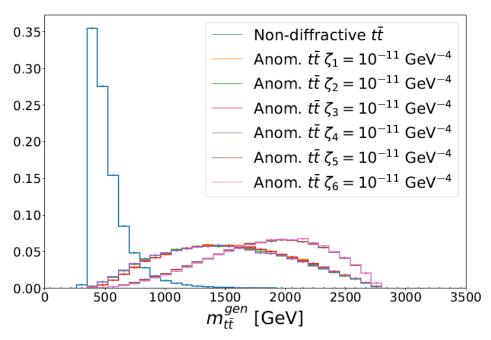


### Introduction - LHC as a photon collider

#### $\circ~$ At high masses, intact protons $\rightarrow$ photon fusion

- At the LHC, intact protons that lose a fraction of their momentum ( $\xi = \Delta p/p$ ) and are scattered at small angles ( $\theta_x^*, \theta_y^*$ ), are deflected away from the proton beam by LHC magnets
- These protons can be measured by very-far near-beam detectors (AFP/PPS located ~200 m from the ATLAS/CMS detectors)




- Displacement of the protons from the beam determines the proton momentum loss  $\xi$  and  $p_T$
- At the 200 m stations forward protons can be measured in the range of  $\xi$  ~ 1.5% –20% and  $p_T$  up to a few GeV

### Introduction - SM predictions

- The SM  $\gamma\gamma \rightarrow t\bar{t}$  processes have been discussed in the literature:
  - V. P. Goncalves et al. (arXiv:2007.04565): SM exclusive and semi-exclusive  $t\bar{t}$  production via  $\gamma\gamma$ ,  $\gamma\mathbb{P}$ ,  $\mathbb{PP}$
  - J. Howarth (arXiv:2008.04249): Elastic production of top quarks
  - M. Łuszczak et al. (arXiv:1810.12432):  $\gamma\gamma \rightarrow t\bar{t}$  production with/without proton dissociation in kT-factorization approach
- SM cross-section with tagged protons within the acceptance of LHC experiments ~ 0.3 fb  $\rightarrow$  accessible at the HL-LHC phase (arXiv:2103.02752).

# Looking beyond the SM

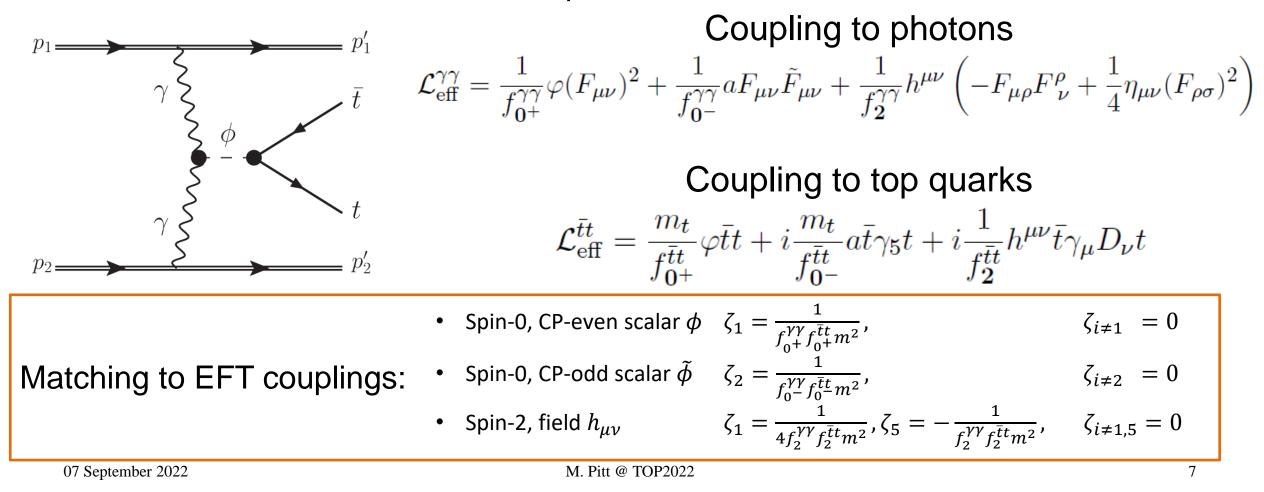
- SM γγ → tt̄ processes dominant at m<sub>tt</sub>
   threshold, while any modifications of γ-top
   coupling will affect the high m<sub>tt</sub> region
  - Anomalous couplings indicate of BSM signal
  - This approach could complement searches for on-shell BSM particles
- EFT approach (valid for  $\Lambda_{BSM} \gg m_{t\bar{t}}$ )
  - Model-independent way of addressing this question



# Signal Model

Anomalous interactions are modeled via dimension-8 EFT operators

 $p_1 \longrightarrow p'_1$   $\gamma \longrightarrow \overline{t}$   $\gamma \longrightarrow t$   $p_2 \longrightarrow p'_2$ 


 $\mathcal{O}_{1} = m_{t}F^{\mu\nu}F_{\mu\nu}\bar{t}t \qquad \qquad \mathcal{O}_{2} = im_{t}F^{\mu\nu}\tilde{F}_{\mu\nu}\bar{t}\gamma_{5}t$  CP-odd (2 derivatives)  $\mathcal{O}_{3} = m_{t}F^{\mu\nu}\tilde{F}_{\mu\nu}\bar{t}t \qquad \qquad \mathcal{O}_{4} = im_{t}F^{\mu\nu}F_{\mu\nu}\bar{t}\gamma_{5}t$   $CP\text{-even (3 derivatives)} \qquad CP\text{-odd (3 derivatives)}$   $\mathcal{O}_{5} = iF^{\mu\rho}F^{\nu}_{\rho}\bar{t}\gamma_{\mu}D_{\nu}t \qquad \qquad \mathcal{O}_{6} = F^{\mu\rho}F^{\nu}_{\rho}\bar{t}\gamma_{5}\gamma_{\mu}D_{\nu}t$ 

**CP-even** (2 derivatives)

In terms of the EFT operators  $\mathcal{L} = \mathcal{L}_{SM} + \Sigma \zeta_i O_i$ , where  $\zeta i$  are the anomalous coupling strengths

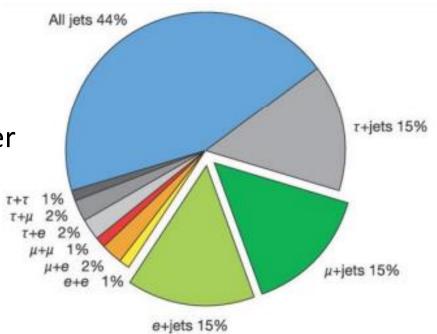
# Signal Model

Neutral particles coupled to photons can be classified to  $\phi$  is CP-even scalar, a (or  $\tilde{\phi}$ ) is CP-odd scalar and  $h^{\mu\nu}$  is CP-even spin-2 field :



# Signal simulation framework

- EFT lagrangian implemented in MadGraph: import model AAttbar\_UFO
- MadGraph matrix element calculations are implemented in Forward Physics MC (FPMC) to generate exclusive events: <u>https://github.com/fpmc-hep/fpmc</u>
- Hadronization and parton shower with Herwig6
  - $\sqrt{s} = 14 \text{ TeV}$
  - Proton momentum loss,  $\xi$ , in the 0.015 0.2 range
    - Match LHC forward detectors acceptance
- Detector simulation with Delphes (CMS reference datacard)
  - 2% gaussian smearing on  $\xi$  to account for detector uncertainties


# $t\bar{t}$ decay channels

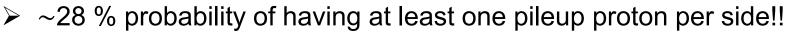
#### <u>3 $t\bar{t}$ decay channels, depending on the W decay type</u>:

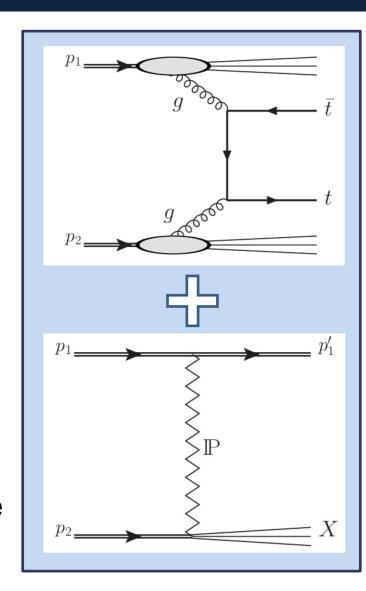
• Fully-leptonic: lowest BR, two neutrinos make the top

#### quark reconstruction less precise

- Fully-hadronic: highest BR, although top quarks are harder to resolve in single large-R jets, higher backgrounds
- Semi-leptonic (e/μ): good BR compromise, easy and precise reconstruction




#### **Results are shown for the semi-leptonic channel**


# Background

At the LHC, with ~50 average interactions / bunch crossing the dominant background is SM processes + pileup protons

#### Main contributions:

- Non-diffractive  $t\bar{t}$  + pileup protons from soft-diffractive events
- Non-diffractive WW + pileup protons (mostly negligible)
- SM exclusive  $t\bar{t} \rightarrow$  negligible (see next selection cuts)
- Background events generated with MadGraph+Pythia8
- Same detector simulation as for signal
- Pileup protons added by sampling from a  $P \propto 1/\xi$  for an average conservative pileup of 50, in the 0.015 0.2  $\xi$  range





### **Event preselection**

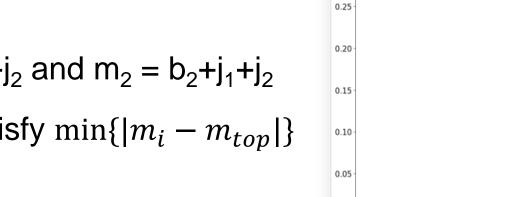
- Enhance semi-leptonic decay channel and select particles for reconstruction
  - b-tagged jets  $\geq 2$
  - Non-b-tagged jets  $\geq 2$
  - Leptons  $\geq 1$
  - MET  $\geq$  20 GeV
  - At least one tagged proton per side



• Highest-pT ( $\xi$  for protons) particles are always chosen, to favor anomalous production (high- $m_{t\bar{t}}$ )

#### Reconstruction

b-jet assignment:


- Compute masses  $m_1 = b_1 + j_1 + j_2$  and  $m_2 = b_2 + j_1 + j_2$
- Assign  $b_i$  to hadronic top satisfy  $\min\{|m_i m_{top}|\}$

#### Leptonic top reconstruction

• Assume pT of neutrino = MET and estimate pZ by imposing W mass constraint

#### $\checkmark$ Reconstructed $m_{t\bar{t}}$ is more accurate

 $\checkmark$  Better match with  $m_{t\bar{t}}$  reconstructed with tagged protons (next slide)



0.30

0.00

-1.5

-1.0

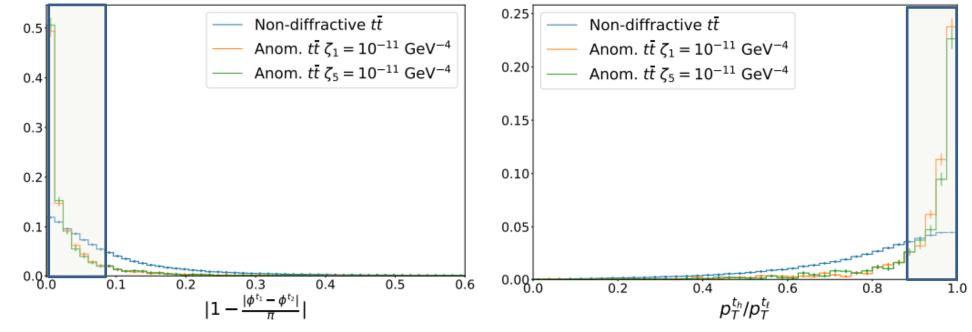
-Ó.5

0.0

0.5

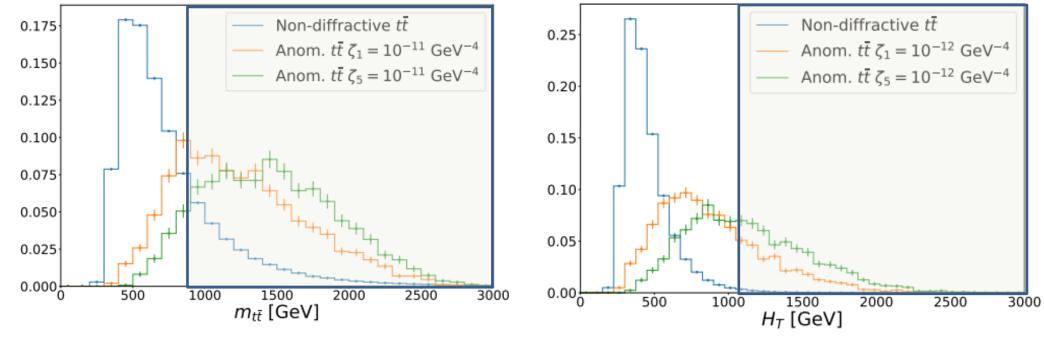
Anom.  $t\bar{t} \zeta_1 = 10^{-12}$ ,  $p_7^{\nu}$  estimated

Normalized to unity


Anom.  $t\bar{t} \zeta_1 = 10^{-12}$ ,  $p_2^{\nu} = 0$  GeV

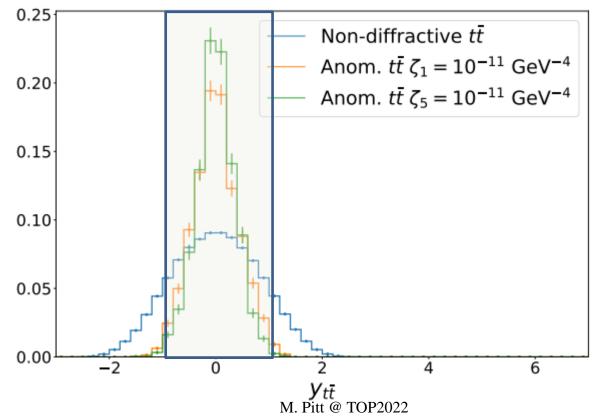
1.0

1.5


#### Central selection: exclusivity cuts

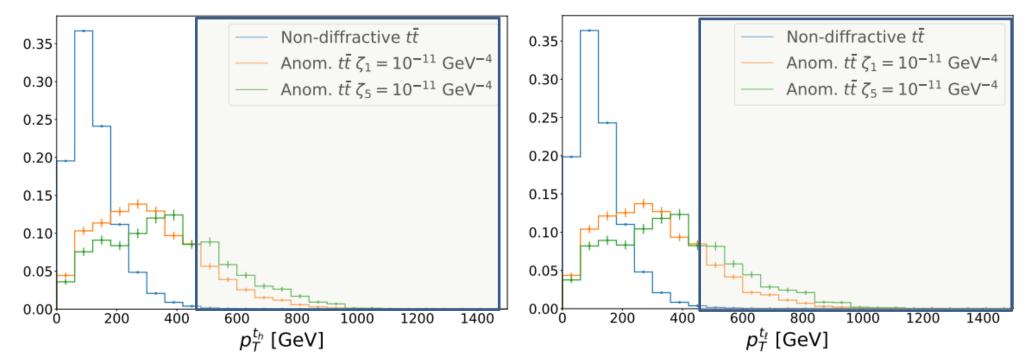
- Exploit exclusivity of signal, top quarks emitted back-to-back
  - Low acoplanarity:  $\left|1 \frac{\Delta \phi_{tt}}{\pi}\right| < 0.09$
  - Top quakrs balanced in pT:  $\frac{p_T^{t_h}}{p_T^{t_l}} > 0.88$




# Central selection: high-mass / HT cuts

- $\circ$  Favor anomalous production by selecting high- $m_{tt}$  events
  - Reconstructed mass of the *tt* system:  $m_{tt}$  > 960 GeV
  - $H_T > 1100 \text{ GeV}$
- $\circ$  Selection optimized for  $\mathcal{O}_1$   $\mathcal{O}_4$




# Central selection: $t\bar{t}$ rapidity

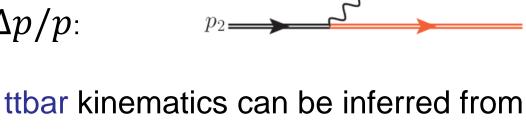
- $\circ$  Top quark reconstruction  $\rightarrow$  Rapidity of ttbar system
- o BSM contributions are more centrally produced
  - Select central events with  $|Y_{tt}| < 0.72$



# Central selection: top quark $p_T$

- $\circ$  Top quark reconstruction  $\rightarrow$  Rapidity of ttbar system
- Favor BSM contribution by selection events with high top pT
  - $p_T^t > 425 \text{ GeV}$




# Proton matching

• Four-momentum conservation:

• In Central Exclusive production of ttbar:

ttbar kinematics = Proton kinematics

• For given proton momentum loss  $\xi = \Delta p/p$ :

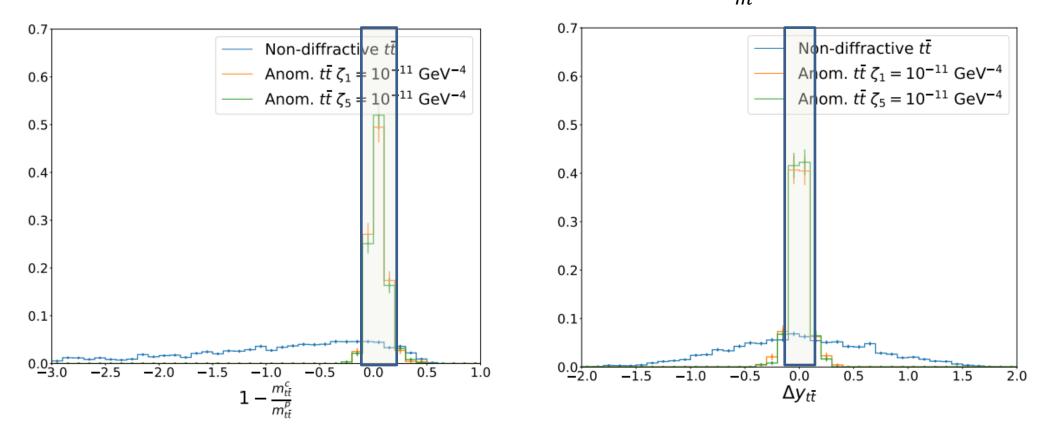


Proton kinematics can be inferred

from the ttbar:

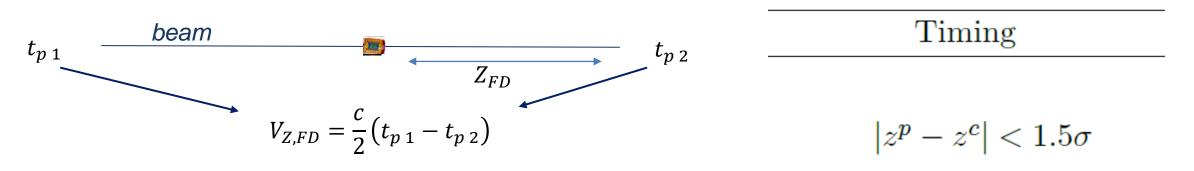
$$\boldsymbol{\xi}_{\pm} = \frac{\sum \boldsymbol{E} \pm \boldsymbol{p}_{\boldsymbol{Z}}}{\sqrt{\boldsymbol{s}}}$$

the protons:


$$m_{tt} = \sqrt{s\xi_+\xi_-}$$

$$Y_{tt} = \frac{1}{2} \log\left(\frac{\xi_+}{\xi_-}\right)$$

# Proton matching


• Four-momentum conservation:

• Matching kinematics to select CEP candidates  $\frac{|\Delta m|}{m} < 0.08$ ,  $|\Delta Y_{tt}| < 0.05$ 



# Proton matching

 Vertex z-coordinate is reconstruction using ToF form forward proton detectors (FD):



• Vertex time coordinate is reconstructed:

$$V_{t,FD} = \frac{\Sigma t_{p,i}}{2} - \frac{Z_{FD}}{c}$$

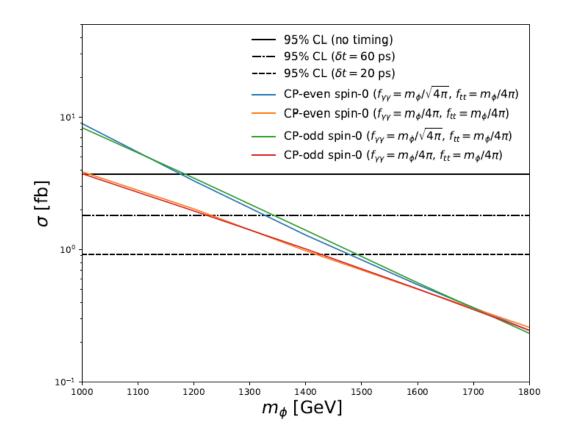
Depends on timing resolution

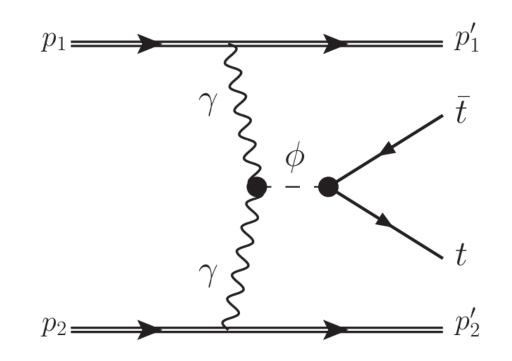
 $|t_+ + t_- - \frac{2 \times 200 \text{m}}{c}| < 1.5\sigma$ 

|                            | Sig                          | nal                         | Background         |                    |                |  |
|----------------------------|------------------------------|-----------------------------|--------------------|--------------------|----------------|--|
| Selection step             | $\zeta_1 = 5 \cdot 10^{-11}$ | $\zeta_5 = 5\cdot 10^{-11}$ | $t\bar{t}$         | WW                 | CEP $t\bar{t}$ |  |
|                            | ${\rm GeV}^{-4}$             | ${\rm GeV}^{-4}$            | (non-diffractive)  | (non-diffractive)  | (diffractive)  |  |
| Pre-selection              | $2.6 \cdot 10^{3}$           | $2.2 \cdot 10^{3}$          | $5.0 \cdot 10^{6}$ | $3.0 \cdot 10^{3}$ | 13             |  |
| Central selection          | 341                          | 487                         | $5.5 \cdot 10^3$   | 25                 | 0              |  |
| Proton matching            | 246                          | 355                         | 95                 | 0                  | 0              |  |
| Timing $(60  \mathrm{ps})$ | 224                          | 323                         | 13.8               | 0                  | 0              |  |
| Timing $(20  \mathrm{ps})$ | 224                          | 323                         | 1.7                | 0                  | 0              |  |

- Results shown for a single coupling point and 300 fb<sup>-1</sup> integrated luminosity, passing fractions do not strongly depend on coupling value
   Cross sections:
- Very strong background rejection provided by proton tagging
  - Could be further improved by using timing detectors
- Only SM *tt* really contributes to background

 $\sigma_{\zeta=5\cdot 10^{-11}[GeV^{-4}]} \sim 250 \text{ fb}$ 


 $\sigma_{tt} \sim 903 \text{ fb}$ 


 $\sigma_{WW} \sim 131 \text{ fb}$ 

| Coupling $[10^{-11}\mathrm{GeV^{-4}}]$ | $95\%~{\rm CL}$ | $5\sigma$ | $95\%\mathrm{CL}~(60\mathrm{ps})$ | $5\sigma$ (60 ps) | $95\%\mathrm{CL}~(20\mathrm{ps})$ | $5\sigma~(20{\rm ps})$ |
|----------------------------------------|-----------------|-----------|-----------------------------------|-------------------|-----------------------------------|------------------------|
| $\zeta_1$                              | 1.5             | 2.5       | 1.1                               | 1.9               | 0.74                              | 1.5                    |
| $\zeta_2$                              | 1.4             | 2.4       | 1.0                               | 1.7               | 0.70                              | 1.4                    |
| $\zeta_3$                              | 1.4             | 2.4       | 1.0                               | 1.7               | 0.70                              | 1.4                    |
| $\zeta_4$                              | 1.5             | 2.5       | 1.0                               | 1.8               | 0.73                              | 1.4                    |
| $\zeta_5$                              | 1.2             | 2.0       | 0.84                              | 1.5               | 0.60                              | 1.2                    |
| $\zeta_6$                              | 1.3             | 2.2       | 0.92                              | 1.6               | 0.66                              | 1.3                    |

- Sensitivities to anomalous couplings extracted for 300 fb<sup>-1</sup> of integrated luminosity and  $\sqrt{s}$  = 14 TeV
- Assuming similar object reconstruction performance and acceptance at the HL-LHC with 3000 fb<sup>-1</sup> and PU~200, we would expect an improvement on the projections by a factor of ~3.

• In the hypothesis of a discovery of the neutral scalar in the  $\gamma\gamma \rightarrow \gamma\gamma$  channel, sensitivity to scalar's coupling to top quarks





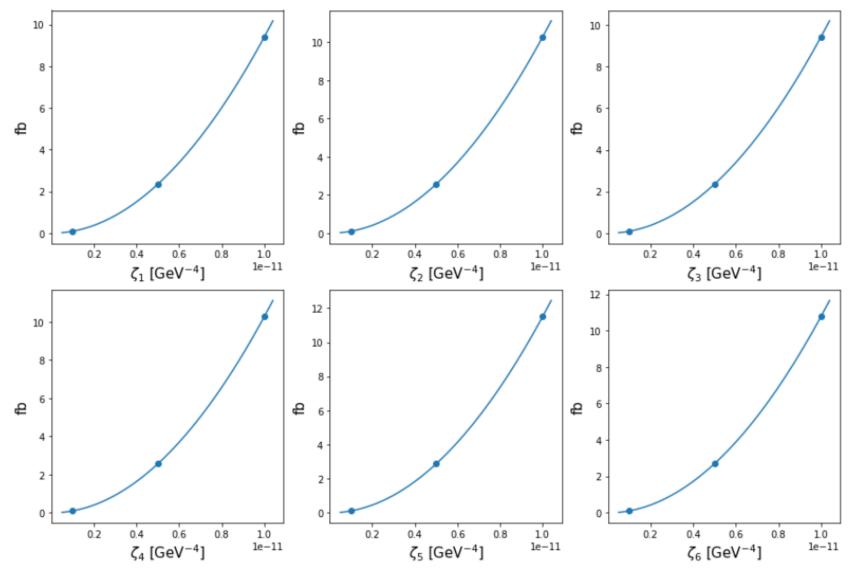
### Summary & outlook

- The EFT model for anomalous  $\gamma \gamma t \overline{t}$  coupling implemented in FPMC
- Available both in Madgraph (AAttbar\_UFO) and FPMC (<u>dataQED\_anomttbar</u>)
- CEP with modified  $\gamma\gamma t\bar{t}$  couplings in semi-leptonic decay channel was analyzed, and expected sensitivities extracted for 300 fb<sup>-1</sup> and  $\sqrt{s}$  = 14 TeV:
  - 95% CL at in range  $\zeta \sim 1.5 \cdot 10^{-11} 0.7 \cdot 10^{-11}$  GeV<sup>-4</sup>
- Sensitivity to new scalars coupled to  $\gamma\gamma$  and  $t\bar{t}$  was analyzed, under hypothesis of  $\gamma\gamma \rightarrow \varphi \rightarrow \gamma\gamma$ , analysis sensitive to scalar masses up to 1.5 TeV



# **Delphes** Simulation

Standard CMS datacard:


- pT- and  $\eta$ -dependent tracking efficiency (~95 % in the most populated region)
- Momentum resolution based on arXiv:1405.6569 and arXiv:1502.02701 formulas
- ECAL resolution formula based on hep-ex/1306.2016 and hep-ex/1502.02701
  - Also  $\eta$ -dependent
- Jet clustering with FastJet:
  - Anti-kt, R = 0.5, JetPTMin = 20 GeV
- MET from Particle Flow approach
- b-tagging based on arXiv:1211.4462

### **Event** selection

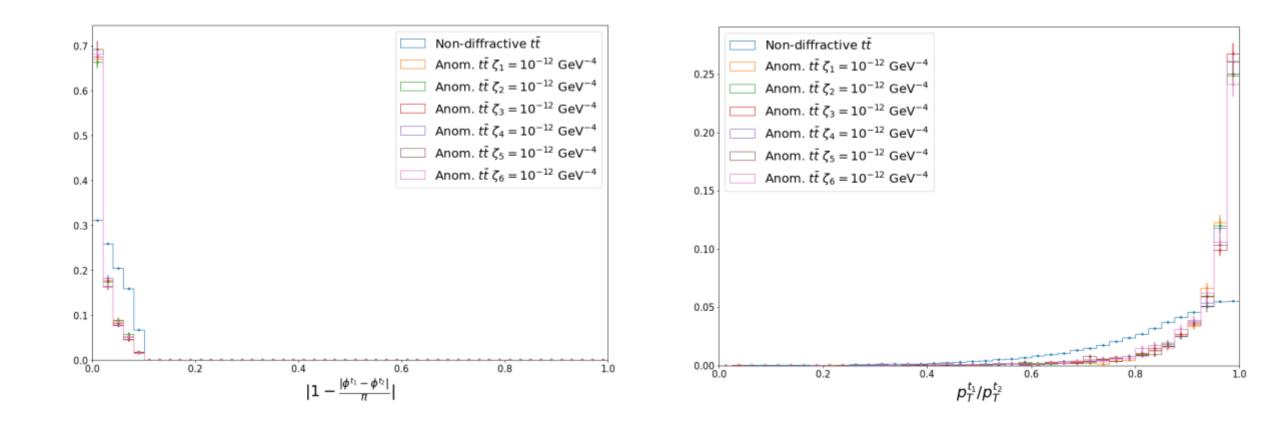
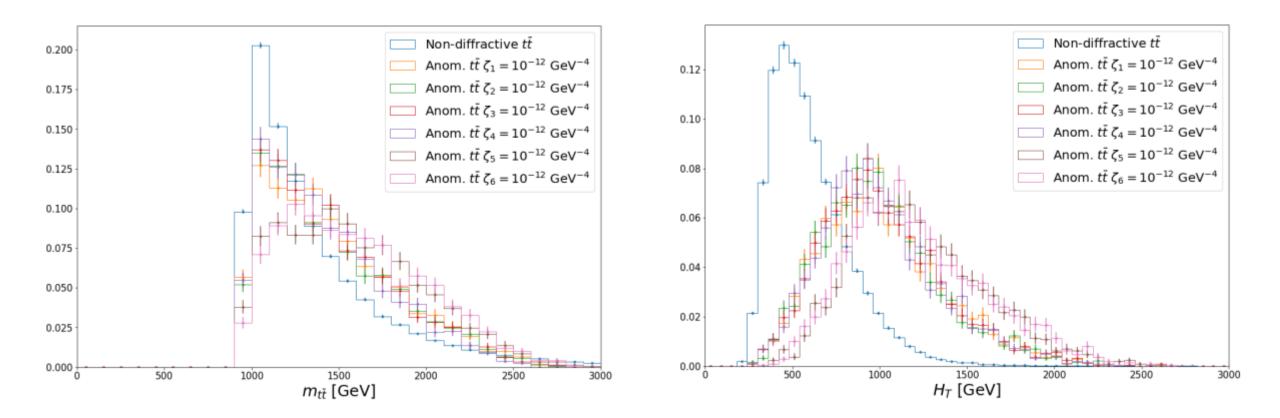

|                            | Sig                         | nal                         | Background        |                   |                |  |
|----------------------------|-----------------------------|-----------------------------|-------------------|-------------------|----------------|--|
| Selection step             | $\zeta_1 = 5\cdot 10^{-11}$ | $\zeta_5 = 5\cdot 10^{-11}$ | $t\bar{t}$        | WW                | CEP $t\bar{t}$ |  |
|                            | ${ m GeV^{-4}}$             | ${\rm GeV}^{-4}$            | (non-diffractive) | (non-diffractive) | (diffractive)  |  |
| Pre-selection              | $2.6\cdot 10^3$             | $2.2\cdot 10^3$             | $5.0\cdot 10^6$   | $3.0\cdot 10^3$   | 13             |  |
| Central selection          | 341                         | 487                         | $5.5\cdot 10^3$   | 25                | 0              |  |
| Proton matching            | 246                         | 355                         | 95                | 0                 | 0              |  |
| Timing $(60  \mathrm{ps})$ | 224                         | 323                         | 13.8              | 0                 | 0              |  |
| Timing $(20  \mathrm{ps})$ | 224                         | 323                         | 1.7               | 0                 | 0              |  |

Table 2. Expected events for  $300 \,\text{fb}^{-1}$  at each of the selection steps, for the representatives of the operator sets  $\mathcal{O}_{1...4}$ ,  $\mathcal{O}_{5...6}$  and for backgrounds. All other couplings are fixed to zero.

#### Coupling vs. Cross Section

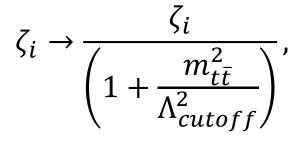



#### **Correlation cross-checks**

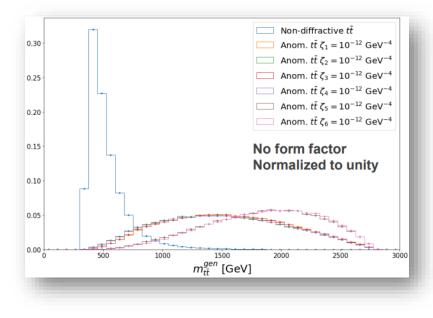


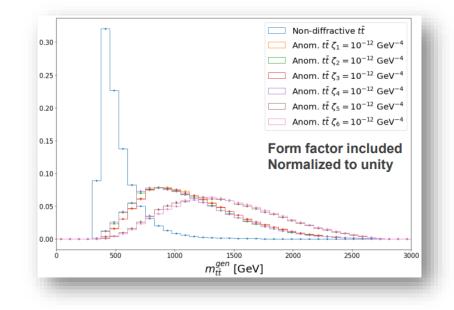
 $p_{T}$  balance distribution not very affected by the acoplanarity cut

#### **Correlation cross-checks**

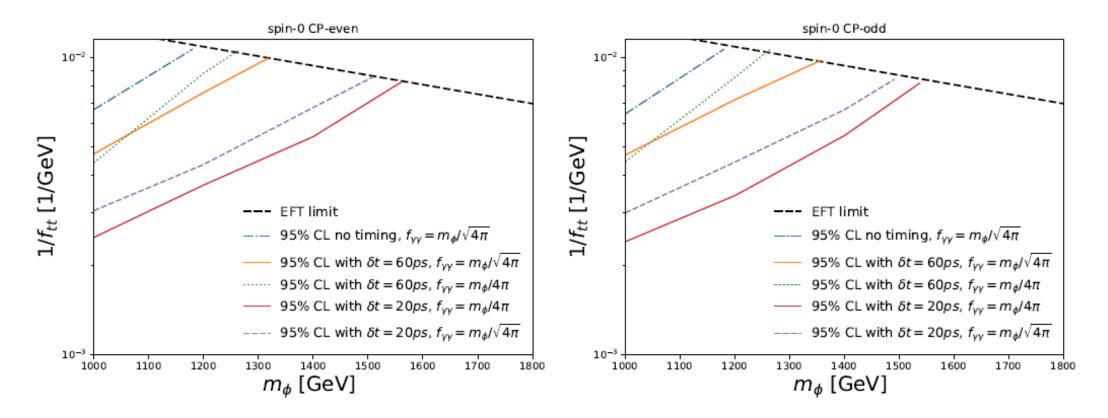



 $H_T$  distribution not significantly affected by  $m_{tt}$  cut


# Unitarity preservation

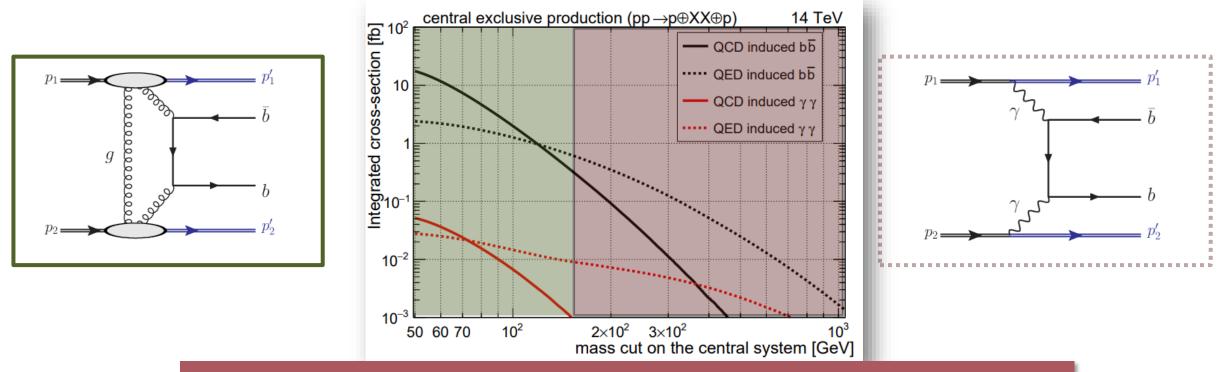

Study performed both with and w/o a form factor to preserve

unitarity:




$$\Lambda_{cutoff} = 2 \, TeV$$






• In the hypothesis of a discovery of the neutral scalar in the  $\gamma\gamma \rightarrow \gamma\gamma$  channel, sensitivity to scalar's coupling to top quarks



#### $pp \rightarrow p \oplus X \oplus p$

- $\circ$  In rare cases of pp collisions:
- Protons remain intact (tagged by forward proton detectors)
- Low track activity due to exchange of color singlets via QCD (Pomeron) or QED ( $\gamma$ )



High mass range is dominated by photon-photon interactions