Asymmetries in tt + X

James Keaveney University of Cape Town South Africa

ATLAS EXPERIMENT

IYUNIVESITHI YASEKAPA • UNIVERSITEIT VAN KAAPSTAD

Asymmetries in tt + X

James Keaveney University of Cape Town

ALLAS EXPERIMENT

UNIVERSITY OF CAPE TOWN NWOT 39AD TO YTIS73VINU IYUNIVESITHI YASEKAPA • UNIVERSITEIT VAN KAAPSTAD

Asymmetries in tt + X - Standard Model

- ~ 15 % of $t\bar{t}$ rate at the 13 TeV LHC arises from the $q\bar{q}$ initial state
- - Born & 1-loop
 - ISR & FSR in $t\bar{t}$ + 1 jet

Asymmetries exhibit kinematic dependence Asymmetries and kinematic dependence enhanced in BSM

 $t\bar{t} + X$ charge asymmetry arises in $q\bar{q}$ initial state @ O(α_S^3) from interference between

Asymmetries in tt + X - Definitions

- charge asymmetry experimentally accessed via observables A_X
- variations of A_X exhibit various advantages/complementarities

$$\begin{aligned} & \textit{top rapidity asymmetry} \\ & A_C^{t\bar{t}} = \frac{N(\Delta \mid y \mid > 0) - N(\Delta \mid y \mid < 0)}{N(\Delta \mid y \mid > 0) + N(\Delta \mid y \mid < 0)} \end{aligned}$$

leptonic asymmetry $A_{C}^{\ell\ell} = \frac{N(\Delta |\eta_{\ell\ell}| > 0) - N(|\eta_{\ell\ell}| < 0)}{N(\Delta |\eta_{\ell\ell}| > 0) + N(\Delta |\eta_{\ell\ell}| < 0)}$

energy asymmetry $t\overline{t} + j$ arXiv: 1305.3272

$$A_{E}(\theta_{j}) = \frac{\sigma^{opt}(\theta_{j} | \Delta E > 0) - \sigma^{opt}(\theta_{j} | \Delta E < \sigma^{opt}(\theta_{j} | \Delta E < 0) + \sigma^{opt}(\theta_{j} | \Delta E < \sigma^{opt}(\theta_{j} | \Delta E < 0) + \sigma^{opt}(\theta_{j} | \Delta E < \sigma^{opt}(\theta_{j} | \Delta E < 0) + \sigma^{opt}(\theta_{j} | \Delta$$

$\Delta |y| = |y_t| - |y_{\overline{t}}|$

 $\Delta |\eta_{\ell\ell}| = |\eta_{\ell^-}| - |\eta_{\ell^+}|$

$$\sigma^{opt}(\theta_j) = \sigma(\theta_j | y_{t\bar{t}j} > 0) + \sigma(\pi - \theta_j | y_{t\bar{t}j} < 0)$$

 θ_i = jet scattering angle w.r.t. incoming parton

Measurement of the energy asymmetry in $t\bar{t}j$ production at 13 TeV with the ATLAS experiment and interpretation in the SMEFT framework Eur. Phys. J. C 82 (2022) 374

Motivation

- charge asymmetry can be measured as an energy asymmetry in *ttj* production, mainly generated in $gq \rightarrow t\bar{t}j$ arXiv: 1305.3272
- unique sensitivity to color/chiral structure in 4–fermion SMEFT operators
- ability to constrain new directions in SMEFT parameter space

Analysis strategy

- I+jets boosted regime + hard extra jet
- asymmetry extracted at particle level using max. likelihood unfolding

$$A_{E}(\theta_{j}) \equiv \frac{\sigma^{\text{opt}}(\theta_{j} | \Delta E > 0) - \sigma^{\text{opt}}(\theta_{j} | \Delta E < \sigma^{\text{opt}}(\theta_{j} | \Delta E > 0) + \sigma^{\text{opt}}(\theta_{j} | \Delta E < \sigma^{\text{opt}}(\theta_{j}$$

$$\sigma^{\rm opt}(\theta_j) = \sigma(\theta_j | y_{t\bar{t}j} > 0) + \sigma(\pi - \theta_j | y_{t\bar{t}j}$$

Measurement of the energy asymmetry in $t\bar{t}j$ production at 13 TeV with the ATLAS experiment and interpretation in the SMEFT framework Eur. Phys. J. C 82 (2022) 374

Motivation

- charge asymmetry can be measured as an energy asymmetry in $t\bar{t}j$ production, mainly generated in $gq \rightarrow t\bar{t}j$ arXiv: 1305.3272
- unique sensitivity to color/chiral structure in 4–fermion SMEFT operators
- ability to constrain new directions in SMEFT parameter space

Analysis strategy

- I+jets boosted regime + hard extra jet
- asymmetry extracted at particle level using max. likelihood unfolding

$$A_{E}(\theta_{j}) \equiv \frac{\sigma^{\text{opt}}(\theta_{j} | \Delta E > 0) - \sigma^{\text{opt}}(\theta_{j} | \Delta E > 0)}{\sigma^{\text{opt}}(\theta_{j} | \Delta E > 0) + \sigma^{\text{opt}}(\theta_{j} | \Delta E > 0)}$$

$$\sigma^{\text{opt}}(\theta_j) = \sigma(\theta_j | y_{t\bar{t}j} > 0) + \sigma(\pi - \theta_j | y_{t\bar{t}j}$$

Motivation

- BSM scenarios predict A_C^{tt} dependence on $t\bar{t}$ kinematics, e.g. resonant axigluon
- A_C^{tt} sensitive to SMEFT operators encoding color/ chirality structures, e.g, $O_{tu}^8 = (\bar{t}\gamma_\mu T^A t)(\bar{u}_i\gamma^\mu T^A u_i)$
- SM A_C^{tt} expectation depends on kinematics, e.g, longitudinal boost ($\beta_{t\bar{t}}^Z$) of $t\bar{t}$ system

Strategy

- Inclusive & differential measurements of $A_C^{t\bar{t}} A_C^{\ell\ell}$
- I+jets & dilepton, resolved & boosted topologies
 - access to high p_T phase space
- Asymmetries extracted @ particle level vs. $p_{t\bar{t}}^T$, $\beta_{t\bar{t}}^Z$ and $m_{t\bar{t}}$ after unfolding

Evidence for the charge asymmetry in $pp \rightarrow t\bar{t}$ production at \sqrt{s} = 13 TeV with the ATLAS detector

Evidence for the charge asymmetry in $pp \rightarrow t\bar{t}$ arXiv:2208.12095, submitted to JHEP

Motivation

- BSM scenarios predict $A_C^{t\bar{t}}$ dependence on $t\bar{t}$ kinematics, e.g. resonant axigluon
- A_C^{tt} sensitive to SMEFT operators encoding color/ chirality structures, e.g, $O_{tu}^8 = (\bar{t}\gamma_\mu T^A t)(\bar{u}_i\gamma^\mu T^A u_i)$
- SM $A_C^{t\bar{t}}$ expectation depends on kinematics, e.g, longitudinal boost ($\beta_{t\bar{t}}^Z$) of $t\bar{t}$ system

Strategy

- Inclusive & differential measurements of $A_C^{t\bar{t}} A_C^{\ell\ell}$
- I+jets & dilepton, resolved & boosted topologies
 - access to high p_T phase space
- Asymmetries extracted @ particle level vs. $p_{t\bar{t}}^T$, $\beta_{t\bar{t}}^z$ and $m_{t\bar{t}}$ after unfolding

Evidence for the charge asymmetry in $pp \rightarrow t\bar{t}$ production at \sqrt{s} = 13 TeV with the ATLAS detector

- **Results Inclusive** A_C^{tt}
- Evidence for non-zero $A_C^{t\bar{t}}$ at **4.7** σ

SMEFT Interpretation NEW!

Evidence for the charge asymmetry in $pp \rightarrow t\bar{t}$ production at \sqrt{s} = 13 TeV with the ATLAS detector

• Statistically dominated precision but already probing state-of-the-art SM prediction

	Post-marg. (pre-marg.) impact ×100
tt modelling	0.06 (0.08)
$t\bar{t}$ normalisation (flat prior)	0.02
Background modelling	0.04 (0.05)
Monte Carlo statistics	0.05
Small-R JES	0.03 (0.03)
Small-R JER	0.03 (0.03)
Large-R JES, JER	0.01 (0.01)
Leptons, $E_{\rm T}^{\rm miss}$	0.02 (0.03)
b-tagging eff.	0.01 (0.01)
Pile-up, JVT, luminosity	0.01 (0.01)
Statistical uncertainty	0.10
Total uncertainty	0.15

Results – Differential A_C^{tt} **vs.** $m_{t\bar{t}}$

• Close agreement with SM

SMEFT Interpretation

- Even more statistically dominated
- Precision of most SMEFT-sensitive bins will rapidly improve with more data

		Post-marg.	(pre-marg.) in	mpact ×100	
$n_{t\bar{t}}$ bin [GeV]	< 500	500–750	750–1000	1000–1500	> 15
\bar{t} modelling	0.15 (0.22)	0.07 (0.10)	0.14 (0.27)	0.31 (0.45)	0.64
\bar{t} normalisation (flat prior)	0.06	0.02	0.08	0.06	0.18
Background modelling	0.09 (0.11)	0.06 (0.08)	0.13 (0.15)	0.22 (0.28)	0.84
Monte Carlo statistics	0.13	0.08	0.20	0.30	1.02
Small-R JES	0.09 (0.10)	0.05 (0.06)	0.13 (0.15)	0.15 (0.17)	0.43
Small-R JER	0.11 (0.16)	0.03 (0.05)	0.09 (0.15)	0.21 (0.29)	0.42
Large-R JES, JER	0.02 (0.02)	0.02 (0.02)	0.02 (0.03)	0.05 (0.05)	0.19
Leptons, $E_{\rm T}^{\rm miss}$	0.04 (0.06)	0.03 (0.04)	0.08 (0.10)	0.06 (0.08)	0.26
b-tagging eff.	0.02 (0.02)	0.01 (0.01)	0.03 (0.03)	0.03 (0.04)	0.27
Pile-up, JVT, luminosity	0.01 (0.01)	0.01 (0.01)	0.01 (0.01)	0.04 (0.04)	0.02
Statistical uncertainty	0.27	0.19	0.46	0.74	2.80
Total uncertainty	0.36	0.23	0.56	0.87	2.88

SMEFT Interpretation NEW!

- Inclusive and diff. (vs. $m_{t\bar{t}}$) $A_C^{t\bar{t}}$ results used to constrain SMEFT individually and in pairs
- Asymmetries parameterised as fcns of SMEFT parameters at NLO (MG5_aMC@NLO + SMEFT @NLO)
- Results generally consistent with SM expectation

SMEFT Interpretation NEW!

- Inclusive and diff. (vs. $m_{t\bar{t}}$) $A_C^{t\bar{t}}$ results used to constrain SMEFT individually and in pairs
- Asymmetries parameterised as fcns of SMEFT parameters at NLO (MG5_aMC@NLO + SMEFT @NLO)
- Results generally consistent with SM expectation

SMEFT Interpretation NEW!

- Inclusive and diff. (vs. $m_{t\bar{t}}$) $A_C^{t\bar{t}}$ results used to constrain SMEFT individually and in pairs
- Asymmetries parameterised as fcns of SMEFT parameters at NLO (MG5_aMC@NLO + SMEFT @NLO)
- Results generally consistent with SM expectation

Complementarity of Energy and Rapidity asymmetries made explicit in 2-D constraints

- tty has enhanced contribution from $q\bar{q}$ initial state
 - larger asymmetry effects
 - dominant effect from ISR/FSR γ interference diagrams
 - -> **negative** asymmetry

Analysis strategy

- I+jets channel, neural net discriminator to maximise S/B
- Kinematic reconstruction to estimate $y_t, y_{\bar{t}}$
- A_C^{tt} extracted at particle level after unfolding procedure

NEW!

Motivation

- tty has enhanced contribution from $q\bar{q}$ initiation • larger asymmetry effects
 - dominant effect from ISR/FSR γ diagrams
 - -> **negative** asymmetry

Analysis strategy

- I+jets channel, neural net discriminator to
- Kinematic reconstruction to estimate $y_t, y_{\overline{t}}$ • A_C^{tt} extracted at particle level after unfolding

Result $A_C = -0.006 \pm 0.030 = -0.006 \pm 0.024$ (stat) ± 0.018 (syst)

SM prediction (MG5-AMC@NLO) $A_C = -0.014 \pm 0.001$ (scale)

Measurement of the charge asymmetry in top quark pair production in association with a photon

	Total uncertainty	0.0		
	Statistical uncertainty	0.0		
	MC statistical uncertainties			
al state	$t\bar{t}\gamma$ production	0.0		
	Background processes	0.0		
S	Modelling uncertainties			
	$t\bar{t}\gamma$ production modelling	0.0		
	Background modelling	0.0		
	Prompt background normalisation	0.0		
	Experimental uncertainties			
maximise S/B	Jet and <i>b</i> -tagging	0.0		
	Fake lepton background estimate	0.0		
	$E_{\rm T}^{\rm miss}$	0.0		
g procedure	Fake photon background estimates	0.0		
	Photon	0.0		
	Other experimental	0.0		

See slides in Tuesday's YSF from M.Miralles Lopez

Motivation

• $t\bar{t}W$ dominated by $q\bar{q}$ initial state

• -> large A_C^{tt}

• Wemission polarises top quarks

• Large **negative** <u>a</u>symmetry in decay product e.g. $A_C^{\ell\ell}$

Analysis strategy

- Search for large $A_C^{\ell\ell}$
- Trilepton channel, regions based on (b)jets
- BDT top select leptons from top decays
- $A_C^{\ell\ell}$ extracted at reco and particle levels via max. likelihood fit and unfolding

Phys. Lett. B 736 (2014) 252 Eur. Phys. J. C. 81 (2021) 675

15

See slides in Tuesday's YSF from M.Miralles Lopez NEW **Detector Level**

Result

 $A_c^{\ell}(t\bar{t}W) = -0.123 \pm 0.136 \text{ (stat.)} \pm 0.051 \text{ (syst.)}$

SM prediction (Sherpa)

 $A_c^{\ell}(t\bar{t}W)_{\rm MC} = -0.084 \, {}^{+0.005}_{-0.003} \, ({\rm scale}) \pm 0.006 \, ({\rm MC \ stat.})$

Particle Level

Result

 $A_c^{\ell}(t\bar{t}W)_{\rm PL} = -0.112 \pm 0.170 \,(\text{stat.}) \pm 0.055 \,(\text{syst.})$

SM prediction (Sherpa)

 $A_c^{\ell}(t\bar{t}W)_{\rm MC} = -0.063^{+0.007}_{-0.004} (\text{scale}) \pm 0.004 (\text{MC stat.})$

Search for leptonic charge asymmetry in $t\bar{t}W$ production in final states with three leptons at $\sqrt{s} = 13$ TeV

Results consistent with SM but with large and dominant statistical uncertainties

NEW See slides in Tuesday's YSF from M.Miralles **Detector Level**

Result

 $A_c^{\ell}(t\bar{t}W) = -0.123 \pm 0.136 \text{ (stat.)} \pm 0.051 \text{ (syst.)}$

SM prediction (Sherpa)

 $A_c^{\ell}(t\bar{t}W)_{\rm MC} = -0.084 \, {}^{+0.005}_{-0.003} \, ({\rm scale}) \pm 0.006 \, ({\rm MC \ stat.})$

Particle Level

Result

 $A_c^{\ell}(t\bar{t}W)_{\rm PL} = -0.112 \pm 0.170 \,(\text{stat.}) \pm 0.055 \,(\text{syst.})$

SM prediction (Sherpa)

 $A_c^{\ell}(t\bar{t}W)_{\rm MC} = -0.063^{+0.007}_{-0.004} (\text{scale}) \pm 0.004 (\text{MC stat.})$

Search for leptonic charge asymmetry in $t\bar{t}W$ production in final states with three leptons at $\sqrt{s} = 13$ TeV

		$\Delta A_c^\ell(t\bar{t}W)$
s Lopez	Experimental uncertainties	
	Jet energy resolution	0.013
	Pile-up	0.007
	<i>b</i> -tagging	0.005
	Leptons	0.004
	$E_{ m T}^{ m miss}$	0.004
	Jet energy scale	0.003
	Luminosity	0.001
	MC modelling uncertainties	
	$t\bar{t}W$ modelling	0.013
	$t\bar{t}Z$ modelling	0.010
	Non-prompt modelling	0.006
	$t\bar{t}H$ modelling	0.005
	Extra uncertainties	
	$\Delta \eta^{\pm}$ dependency	0.046
	MC statistical uncertainty	0.019
	Data statistical uncertainty	0.136
	Total uncertainty	0.145

Results consistent with SM but with large and dominant statistical uncertainties

Summary and conclusions

- asymmetries enhanced in BSM, e.g. SMEFT operators
- variations of top rapidity charge asymmetry have desirable properties
 - energy asymmetry unique sensitivity to SMEFT
 - leptonic asymmetry sensitive to top polarisation

• ATLAS has measured top $t\bar{t} + X$ charge asymmetries in numerous regimes

- Top rapidity asymmetry in resolved and boosted *tt* topologies
- leptonic asymmetry in resolved $t\bar{t}$ topologies
- *tt* energy asymmetry
- top rapidity asymmetry in $t\overline{t} + \gamma$ production
- leptonic asymmetry in $t\bar{t}W$ topologies
- \bullet **Novel SMEFT constraints derived**

• $t\bar{t} + X$ charge asymmetries predicted to be non-zero in SM and grow with energy/angle

Results broadly consistent with SM expectations and largely statistically dominated