

Evidence for Four-Top Quark Production at the LHC

Nicholas Manganelli for the CMS Collaboration

15th International Conference on Top-quark Physics (TOP2022), Durham, UK, 4-9 September 2022

Introduction

- (NLO QCD + EW: <u>JHEP 02 (2018) 031</u>)
- Important test of SM at large mass scales
- Enhancement of cross section predicted by some beyond-the-Standard-Model (BSM) physics
- Results from the combination of single-, di-lepton, and all-hadronic decay channels

15th Int. Conf. on Top-quark Physics (TOP2022)

Event Selection & Triggers

	Single Lepton	Opposite Sign Dilepton*	All Hadronic
Triggers & Leptons	single-lepton triggers, one isolated (or loosely isolated with large H_T) (e or μ)	di-lepton triggers, two oppositely charged muons and/or electrons (ee, μμ, or eμ)	OR of 6-jet / b-tag / H _T cross triggers. Veto on leptons (e & μ)
HT	Η _T > 500 GeV	Η _T > 500 GeV	Н _Т > 700 GeV
# AK4 jets	6+, p _T > 30 GeV	4+, p _T > 30 GeV	9+, p _T > 35 GeV
#b-tagged jets	2+	2+	3+
Other	p _T ^{miss} > 60 GeV	Additional invariant mass cuts in <i>ee</i> and $\mu\mu$ channels	1+ tagged resolved tops

*OSDL 2017 and 2018 combined with published 2016 results

15th Int. Conf. on Top-quark Physics (TOP2022)

Analysis Strategies

	Single Lepton	Opposite Sign Dilepton	All Hadronic
Baseline selection	1 lepton, H _T > 500 GeV 6+ jets, 2+ b-jets, p _T ^{miss} > 60 GeV	2 opposite sign leptons H _T > 500 GeV, 4+ jets, 2+ b-jets, invariant mass selections (<i>ee</i> , μμ)	0 leptons, H _T > 700 GeV, 9+ jets, 3+b-tags, 1+ resolved tops
Major backgrounds	tt	tt	tt and QCD
Background estimation	simulation	simulation	tt and QCD estimated from data, others from simulation
Signal region categorization	e or μ channel, jet/b-tag multiplicity, resolved t multiplicity	ee, μμ, or eμ channel, jet/b-tag multiplicity	resolved/boosted t multiplicity & H _T
Discriminating variable	BDT	HT	BDT

Single Lepton Channel - Event categorization

- Events categorized by lepton flavor, AK4 jet multiplicity, b-tagged jet multiplicity, and resolved t-tagged jet multiplicity
 - single-e or single- μ
 - AK4 jets: 6/7/8/9/10+
 - b-jets: 2/3/4+ (2 b-tag categories are used as a control region)
 - Resolved t-candidates: 0/1+
- Signal regions are characterized by high jet/b-jet/t-tag multiplicity.

Backgrounds

- Background > 90% tt in all regions
- Background-like regions dominated by tt+!bb, while signal-like regions dominated by tt+bb
- tt+bb normalization is corrected using a factor of 1.2 from CMS measurements (JHEP 07 (2020) 125)

Event Category

BDT Analysis

- BDT trained with tttt as signal and tt as background in ≥6j/≥2b inclusive region
- Prefit modeling validated using 2+ b-jet inclusive region

Data/MC agreement within uncertainties (statistical + systematic)

Postfit Results

- BDT template fit
- Results shown in BDT bins for 3 different top / b-tag categories
- Combined single-e and single-µ channels for 8+ jets

Opposite Sign Dilepton Channel Data Categorization and Fit

- Events categorized by:
 - Year (2017, 2018)
 - Lepton channel (ee, μμ, eμ)
 - Jet multiplicity (4, 5, 6, 7, 8+)
 - b tag multiplicity (2, 3, 4+)
- The largest backgrounds in the signal-rich categories are tt+bb, tt+!bb, tt+H
- Background modeling validated using 2 b-tag, 4+ jets control region
- H_{τ} is used as the discriminating variable
- A binned maximum likelihood fit is performed simultaneously in all categories

15th Int. Conf. on Top-quark Physics (TOP2022)

Good modeling of all kinematic and ID variables

15th Int. Conf. on Top-quark Physics (TOP2022)

Postfit Results

2017+18 Data All Channels Combined

15th Int. Conf. on Top-quark Physics (TOP2022)

All Hadronic Channel Signal Region

- Signal region (SR) = baseline + 1 or more resolved tops
- SR bins split by HT and resolved+boosted top multiplicity
 - Splitting by top multiplicity found to be highly discriminatory
 - Optimized to achieve most sensitivity while maintaining sufficient signal statistics per bin

Baseline Selection:

N(leptons)=0, N(jets)≥9, N(bjets)≥3, HT≥700 GeV

15th Int. Conf. on Top-quark Physics (TOP2022)

All-hadronic Channel

Data-driven method to predict most significant backgrounds (QCD+tt)

- Define orthogonal CR (signal insensitive) and SR regions
- Correct data yields in CR by subtracting off simulated non-QCD and tt background
- Model the QCD + tt background in CR using an extended ABCD treatment (normalization) + NN (shape)
- Validate combined model in region closest to SR (8 jets instead of 9 jets for SR). Compare to data - simulated non-QCD and tt background
- Perform a BDT analysis using the data-driven model + other simulated backgrounds

15th Int. Conf. on Top-quark Physics (TOP2022)

*Huang, Krueger, Lacoste, Courville. *Neural Autoregressive Flows*. <u>arXiv:1804.00779</u> *S. Choi. arXiv:2008.0363

Shape Predictions for BDT and ${\rm H}_{\rm T}$

• Neural net (NN) finds transformation from input distribution

 \rightarrow target distribution (Neural autoregressive flow)

 Maps simulated tt distributions onto tt + QCD distributions in 5 CR distributions for BDT & H_τ simultaneously

Nicholas Manganelli - UC Riverside

15th Int. Conf. on Top-quark Physics (TOP2022)

Modeling in the Validation Region

Prefit BDT Discriminant shape predictions for most sensitive categories 2016-2018 combined

Results in the Signal Region

CMS Preliminary **CMS** Preliminary 138 fb⁻¹ (13 TeV) 138 fb⁻¹ (13 TeV) Entries / bin / bin 350 ttH+ttV ttH+ttV $N_{RT} \ge 2$ $N_{RT} = 1$, $N_{BT} \ge 1$ minor minor Entries $H_T > 1100 \text{ GeV}$ $H_T > 1400 \text{ GeV}$ QCD+tt (DD) QCD+tt (DD) 300 tttt Postfit data data 250 uncertainty band uncertainty band 200 **BDT** Discriminant 200 distributions in 150 150 most sensitive 100 100 categories 50 ratio data/prediction ratio data/prediction for 2016-2018 combined 0.5 0.5 0.6 0.4 0.2 0.2 0.8 0.4 0.6 0.8 **BDT** discriminant **BDT** discriminant

Final States Entering the Combined Result

- 2016 Opposite-sign dilepton search JHEP 11 (2019) 082
- 2016-18 Same-sign dilepton and multi-lepton search EPJC 80 (2020) 75
- This analysis: 2016-18 Single-lepton search
- This analysis: 2017-18 Opposite-sign dilepton search
- This analysis: 2016-18 All-hadronic search

Analysis of full CMS Run 2 dataset in all channels excluding the tau decays

tt+X, Renorm./Fact. scale, ISR/FSR are the dominant uncertainties (detailed breakdown in backup) Branching Ratio as function of isolated charged leptons (L=e, μ , τ)

Signal Strength

Observed Signal strength 1.4 ± 0.4 x SM

higher than current SM predictions but also consistent with them

15th Int. Conf. on Top-quark Physics (TOP2022)

Signal Strength

Run 2 tttt signal strength scans for each channel separately and for the combined results

15th Int. Conf. on Top-quark Physics (TOP2022)

Significance

Analysis	Expected significance	Observed significance
Run 2 Single-lepton	1.2	1.4
Run 2 Opposite ** sign diliepton	0.8	1.4
Run 2 All-hadronic	0.4	2.5
Run 2 Same sign dilepton & multilepton*	2.7	2.6
Combined	3.2	3.9

** includes published 2016 result

* published SSDL/ML result

15th Int. Conf. on Top-quark Physics (TOP2022)

CMS and ATLAS Results

CMS-PAS-TOP-21-005

ATLAS JHEP 11 (2021) 118

expected significance: 3.2 σ observed significance: 3.9 σ

expected significance: 2.6 σ observed significance: 4.7 σ

15th Int. Conf. on Top-quark Physics (TOP2022)

Summary

- First tttt analysis to include all-hadronic channel
- Expected significance: 3.2 σ
- Observed significance: 3.9 σ
- Observed cross section higher than current SM predictions but also consistent with them

Observed cross section: 17 ± 5 fb

Similar behavior to that seen by ATLAS

15th Int. Conf. on Top-quark Physics (TOP2022)

Backup Material

good agreement for both years in all three channels

15th Int. Conf. on Top-quark Physics (TOP2022)

Postfit Results

OSDL 2017+18 All Channels Combined

2 b-tag Control Region

15th Int. Conf. on Top-quark Physics (TOP2022)

Signal Strength - by Year and by Channel

tttt signal strength scans for each channel - separated by year and combined

15th Int. Conf. on Top-quark Physics (TOP2022)

Top Yukawa Coupling from tttt cross section

Cross section measurement 95 % CL upper limit on top Yukawa coupling value is 1.9

15th Int. Conf. on Top-quark Physics (TOP2022)