Prospects of top coupling measurements

Eleni Vryonidou University of Manchester

Based mainly on arXiv:2205.02140 and 2208.04962

Top2022 Durham, 4-9/9/22

Outline

- Prospects for top couplings at the HL-LHC
- Prospects for lepton colliders
- Future for 4-tops in 4-tops
- Future for 4-tops outside 4-tops

Operator map

E.Vryonidou

Top2022, 8/9/22

LHC top observables

LHC Data

Top-pair production W-helicities, asymmetry

Dataset	\sqrt{s}, \mathcal{L}	Info	Observables	$n_{\rm dat}$	Ref
ATLAS_tt_8TeV_1jets	8 TeV, 20.3 fb ⁻¹	lepton+jets	$d\sigma/dm_{t\bar{t}}$	7	[46]
CMS_tt_8TeV_ljets	$8 \text{ TeV}, 20.3 \text{ fb}^{-1}$	lepton+jets	$1/\sigma d\sigma/dy_{t\bar{t}}$	10	[47]
CMS_tt2D_8TeV_dilep	8 TeV, 20.3 fb^{-1}	dileptons	$\left \ 1/\sigma d^2\sigma/dy_{t\bar{t}}dm_{t\bar{t}} \right.$	16	[48]
ATLAS_tt_8TeV_dilep (*)	8 TeV, 20.3 fb ⁻¹	dileptons	$d\sigma/dm_{t\bar{t}}$	6	[54]
CMS_tt_13TeV_1jets_2015	13 TeV, 2.3 fb^{-1}	lepton+jets	$d\sigma/dm_{t\bar{t}}$	8	[51]
CMS_tt_13TeV_dilep_2015	13 TeV, 2.1 fb ⁻¹	dileptons	$d\sigma/dm_{t\bar{t}}$	6	[53]
CMS_tt_13TeV_1jets_2016	13 TeV, 35.8 fb^{-1}	lepton+jets	$d\sigma/dm_{t\bar{t}}$	10	[52]
CMS_tt_13TeV_dilep_2016 (*)	13 TeV, 35.8 fb^{-1}	dileptons	$d\sigma/dm_{t\bar{t}}$	7	[56]
ATLAS_tt_13TeV_ljets_2016 (*)	13 TeV, 35.8 fb^{-1}	lepton+jets	$d\sigma/dm_{t\bar{t}}$	9	[55]
ATLAS_WhelF_8TeV	8 TeV, 20.3 fb^{-1}	W hel. fract	F_0, F_L, F_R	3	[49]
CMS_WhelF_8TeV	8 TeV, 20.3 fb^{-1}	W hel. fract	F_0, F_L, F_R	3	[50]
ATLAS_CMS_tt_AC_8TeV (*)	8 TeV, 20.3 fb ⁻¹	charge asymmetry	A _C	6	[57]
ATLAS_tt_AC_13TeV (*)	8 TeV, 20.3 fb^{-1}	charge asymmetry	A_C	5	[58]

Dataset	\sqrt{s}, \mathcal{L}	Info	Observables	$N_{\rm dat}$	Ref
CMS_t_tch_8TeV_inc	8 TeV, 19.7 fb^{-1}	t-channel	$\sigma_{\rm tot}(t), \sigma_{\rm tot}(\bar{t})$	2	[83]
ATLAS_t_tch_8TeV	8 TeV, 20.2 fb^{-1}	<i>t</i> -channel	$d\sigma(tq)/dy_t$	4	[85]
CMS_t_tch_8TeV_dif	8 TeV, 19.7 fb ⁻¹	t-channel	$d\sigma/d y^{(t+\bar{t})} $	6	[84]
CMS_t_sch_8TeV	8 TeV, 19.7 fb^{-1}	s-channel	$\sigma_{\rm tot}(t+\bar{t})$	1	[87]
ATLAS_t_sch_8TeV	8 TeV, 20.3 fb^{-1}	s-channel	$\sigma_{\rm tot}(t+\bar{t})$	1	[86]
ATLAS_t_tch_13TeV	$13 \text{ TeV}, 3.2 \text{ fb}^{-1}$	<i>t</i> -channel	$\sigma_{\rm tot}(t), \sigma_{\rm tot}(\bar{t})$	2	[88]
CMS_t_tch_13TeV_inc	$13 \text{ TeV}, 2.2 \text{ fb}^{-1}$	t-channel	$\sigma_{\rm tot}(t), \sigma_{\rm tot}(\bar{t})$	2	[90]
CMS_t_tch_13TeV_dif	$13 \text{ TeV}, 2.3 \text{ fb}^{-1}$	t-channel	$d\sigma/d y^{(t+\bar{t})} $	4	[89]
CMS_t_tch_13TeV_2016 (*)	$13 \text{ TeV}, 35.9 \text{ fb}^{-1}$	t-channel	$d\sigma/d y^{(t)} $	5	[91]

Single top t-, s-channel

	Dataset	\sqrt{s}, \mathcal{L}	Info	Observables	N_{dat}	Ref
	ATLAS_tW_8TeV_inc	8 TeV, 20.2 fb^{-1}	inclusive (dilepton)	$\sigma_{ m tot}(tW)$	1	[95]
	ATLAS_tW_inc_slep_8TeV (*)	8 TeV, 20.2 fb ⁻¹	inclusive (single lepton)	$\sigma_{ m tot}(tW)$	1	[101]
	CMS_tW_8TeV_inc	8 TeV, 19.7 fb^{-1}	inclusive	$\sigma_{\rm tot}(tW)$	1	[96]
tW. tZI	ATLAS_tW_inc_13TeV	13 TeV, 3.2 fb ⁻¹	inclusive	$\sigma_{\rm tot}(tW)$	1	[97]
,	CMS_tW_13TeV_inc	13 TeV, 35.9 fb ⁻¹	inclusive	$\sigma_{\rm tot}(tW)$	1	[98]
	ATLAS_tZ_13TeV_inc	13 TeV, 36.1 fb ⁻¹	inclusive	$\sigma_{\rm tot}(tZq)$	1	[100]
	ATLAS_tZ_13TeV_run2_inc (*)	13 TeV, 139.1 fb^{-1}	inclusive	$\sigma_{\rm fid}(t\ell^+\ell^-q)$	1	[102]
	CMS_tZ_13TeV_inc	13 TeV, 35.9 fb ⁻¹	inclusive	$\sigma_{\rm fid}(Wb\ell^+\ell^-q)$	1	[99]
	CMS_tZ_13TeV_2016_inc (*)	13 TeV, 77.4 fb^{-1}	inclusive	$\sigma_{\rm fid}(t\ell^+\ell^-q)$	1	[103]

Category	Processes	$n_{ m dat}$
	$t\bar{t}$ (inclusive)	94
	$tar{t}Z,tar{t}W$	14
Top quark production	single top (inclusive)	27
Top quark production	tZ, tW	9
	$t\bar{t}t\bar{t},t\bar{t}bar{b}$	6
	Total	150

4 tops, ttbb, toppair associated production

Dataset	\sqrt{s}, \mathcal{L}	Info	Observables	$N_{\rm dat}$	Ref
CMS_ttbb_13TeV	$13 \text{ TeV}, 2.3 \text{ fb}^{-1}$	total xsec	$\sigma_{\rm tot}(t\bar{t}b\bar{b})$	1	[70]
CMS_ttbb_13TeV_2016 (*)	13 TeV, 35.9 fb ⁻¹	total xsec	$\sigma_{\rm tot}(t\bar{t}b\bar{b})$	1	[79]
ATLAS_ttbb_13TeV_2016 (*)	$13 \text{ TeV}, 35.9 \text{ fb}^{-1}$	total xsec	$\sigma_{\rm tot}(t\bar{t}b\bar{b})$	1	[78]
CMS_tttt_13TeV	13 TeV, 35.9 fb ⁻¹	total xsec	$\sigma_{\rm tot}(t\bar{t}t\bar{t})$	1	[71]
CMS_tttt_13TeV_run2 (*)	13 TeV, 137 fb^{-1}	total xsec	$\sigma_{\rm tot}(t\bar{t}t\bar{t})$	1	[76]
ATLAS_tttt_13TeV_run2 (*)	$13 \text{ TeV}, 137 \text{ fb}^{-1}$	total xsec	$\sigma_{\rm tot}(t\bar{t}t\bar{t})$	1	[77]
CMS_ttZ_8TeV	$8 \text{ TeV}, 19.5 \text{ fb}^{-1}$	total xsec	$\sigma_{\rm tot}(t\bar{t}Z)$	1	[72]
CMS_ttZ_13TeV	13 TeV, 35.9 fb ⁻¹	total xsec	$\sigma_{\rm tot}(t\bar{t}Z)$	1	[73]
CMS_ttZ_ptZ_13TeV (*)	13 TeV, 77.5 fb ⁻¹	total xsec	$d\sigma(t\bar{t}Z)/dp_T^Z$	4	[81]
ATLAS_ttZ_8TeV	8 TeV, 20.3 fb ⁻¹	total xsec	$\sigma_{\rm tot}(t\bar{t}Z)$	1	[74]
ATLAS_ttZ_13TeV	$13 \text{ TeV}, 3.2 \text{ fb}^{-1}$	total xsec	$\sigma_{\rm tot}(t\bar{t}Z)$	1	[75]
ATLAS_ttZ_13TeV_2016 (*)	$13 \text{ TeV}, 36 \text{ fb}^{-1}$	total xsec	$\sigma_{\rm tot}(t\bar{t}Z)$	1	[<mark>80</mark>]
CMS_ttW_8_TeV	8 TeV, 19.5 fb^{-1}	total xsec	$\sigma_{\rm tot}(t\bar{t}W)$	1	[72]
CMS_ttW_13TeV	13 TeV, 35.9 fb ⁻¹	total xsec	$\sigma_{\rm tot}(t\bar{t}W)$	1	[73]
ATLAS_ttW_8TeV	8 TeV, 20.3 fb ⁻¹	total xsec	$\sigma_{\rm tot}(t\bar{t}W)$	1	[74]
ATLAS_ttW_13TeV	$13 \text{ TeV}, 3.2 \text{ fb}^{-1}$	total xsec	$\sigma_{\rm tot}(t\bar{t}W)$	1	[75]
ATLAS_ttW_13TeV_2016 (*)	$13 \text{ TeV}, 36 \text{ fb}^{-1}$	total xsec	$\sigma_{\rm tot}(t\bar{t}W)$	1	[<mark>80</mark>]

Ethier, Maltoni, Mantani, Nocera, Rojo, Slade, EV and Zhang arXiv:2105.00006

- More data always helps
- Bounds vary between operators
- ttZ ones and 4-heavy ones loosely constrained

See Maeve's talk on Tuesday

Ethier, Maltoni, Mantani, Nocera, Rojo, Slade, EV and Zhang arXiv:2105.00006

- More data always helps
- Bounds vary between operators
- ttZ ones and 4-heavy ones loosely constrained

See Maeve's talk on Tuesday

Ethier, Maltoni, Mantani, Nocera, Rojo, Slade, EV and Zhang arXiv:2105.00006

- More data always helps
- Bounds vary between operators
- ttZ ones and 4-heavy ones loosely constrained

See Maeve's talk on Tuesday

Brivio, Bruggisser, Maltoni, Moutafis, Plehn, EV, Westhoff, Zhang arXiv:1910.03606 (SFitter analysis)

E.Vryonidou

Top2022, 8/9/22

The future

E.Vryonidou

What we can hope to know in the future

Goals:

- Explore HL-LHC prospects
- Explore future collider prospects
- Do this in some some unified fit setup, with reasonable uncertainty assumptions

Snowmass: A good motivation!

	Coefficients fitted					
	C_{tG}	$C^3_{\varphi Q}$	$C^{\varphi Q} = C^1_{\varphi Q} - C^3_{\varphi Q}$			
2-quark	$C_{arphi t}$	$C_{arphi b}$	$C_{tZ} = c_W C_{tW} - s_W C_{tB}$			
	_	$C_{t\varphi}$	C_{tW}			
	$C_{tu}^8 = \sum_{uu} 2C_{uu}^{(i33i)}$	$C_{td}^8 = \sum_{ud} C_{ud}^{8(33ii)}$	$C_{Qq}^{1,8} = \sum_{qq} C_{qq}^{1(i33i)} + 3C_{qq}^{3(i33i)}$			
4-quark	$C_{Qu}^{8} = \sum_{i=1,2}^{i=1,2} C_{qu}^{8(33ii)}$	$C_{Qd}^{8} = \sum_{i=1,2,3}^{i=1,2,3} C_{qd}^{8(33ii)}$	$C_{Qq}^{3,8} = \sum_{i=1,2}^{i=1,2} C_{qq}^{1(i33i)} - C_{qq}^{3(i33i)}$			
	_		$C_{tq}^{8} = \sum_{i=1,2} C_{uq}^{8(ii33)}$			
0 marcarla	C_{eb}	C_{et}	$C_{lQ}^{+} = C_{lQ}^{1} + C_{lQ}^{3}$			
2-quark 2-lepton	C_{lb}	C_{lt}	$C_{lQ}^{-} = C_{lQ}^{1} - C_{lQ}^{3}$			
	_	_	C_{eQ}			

- Following Top WG note
- Only colour octet 2light-2-heavy operators
- No 4-heavy operators (see later)
- Only linear $\mathcal{O}(1/\Lambda^2)$ contributions

Durieux, Gutierez, Mantani, Miralles, Mirrales, Moreno, Poncelet, EV, Vos arXiv:2205.02140

E.Vryonidou

Top2022, 8/9/22

Observables and projections

Process	Observable	\sqrt{s}	$L_{\rm int}$	Experiment	SM	Ref.
$pp \to t\bar{t}$	$d\sigma/dm_{t\bar{t}} (15+3 \text{ bins})$	13 TeV	$140 {\rm ~fb^{-1}}$	CMS	[19]	[20]
$pp \to t\bar{t}$	$dA_C/dm_{t\bar{t}}$ (4+2 bins)	$13 { m TeV}$	$140 {\rm ~fb^{-1}}$	ATLAS	[19]	[21]
$pp \rightarrow t\bar{t}H + tHq$	σ	$13 { m TeV}$	$140 {\rm ~fb^{-1}}$	ATLAS	[22]	[23]
$pp \to t\bar{t}Z$	$d\sigma/dp_T^Z$ (7 bins)	$13 { m TeV}$	$140 {\rm ~fb^{-1}}$	ATLAS	[24]	[25]
$pp \to t\bar{t}\gamma$	$d\sigma/dp_T^{\gamma}$ (11 bins)	$13 { m TeV}$	$140 {\rm ~fb^{-1}}$	ATLAS	[26, 27]	[28]
$pp \rightarrow tZq$	σ	$13 { m TeV}$	77.4 fb^{-1}	CMS	[29]	[30]
$pp \to t\gamma q$	σ	$13 { m TeV}$	$36 {\rm ~fb^{-1}}$	CMS	[31]	[31]
$pp \to t\bar{t}W$	σ	$13 { m TeV}$	$36 {\rm ~fb^{-1}}$	CMS	[22, 32]	[33]
$pp \to t\bar{b} \text{ (s-ch)}$	σ	8 TeV	$20 { m ~fb^{-1}}$	LHC	[34, 35]	[36]
$pp \to tW$	σ	8 TeV	$20 { m ~fb^{-1}}$	LHC	[37]	[36]
$pp \rightarrow tq \text{ (t-ch)}$	σ	8 TeV	$20 { m ~fb^{-1}}$	LHC	[34, 35]	[36]
$t \to Wb$	F_0, F_L	8 TeV	$20 { m ~fb^{-1}}$	LHC	[38]	[39]
$p\bar{p} \rightarrow t\bar{b} \text{ (s-ch)}$	σ	1.96 TeV	$9.7 { m ~fb^{-1}}$	Tevatron	[40]	[41]
$e^-e^+ \rightarrow b\bar{b}$	R_b , A^{bb}_{FBLR}	$\sim 91~{\rm GeV}$	202.1 pb^{-1}	LEP/SLD	-	[42]

For HL-LHC assume S2:

- Experimental uncertainties scale as $1/\sqrt{L_{int}}$. Reduced by a factor of 5 for full HL-LHC dataset (except for the top pair production + asymmetry)
- Theory and modelling uncertainties are divided by 2

observable		binning				
σ vs. $m_{t\bar{t}}$ [GeV]	bin 1	bin 2	bin 3	bin 4	bin 5	bin 6
	250-400	400-480	480-560	560-640	640-720	720-800
	bin 7	bin 8	bin 9	bin 10	bin 11	bin 12
	800-900	900-1000	1000-1150	1150-1300	1300-1500	1500-1700
	bin 13	bin 14	bin 15	bin 16	bin 17	bin 18
	1700-2000	2000-2300	2300-2600*	2600-3000*	3000-3500*	3500-4000*
A_C vs. $m_{t\bar{t}}$ [GeV]	bin 1	bin 2	bin 3	bın 4	bın 5	bin 6
	500-750	750-1000	1000-1500	1500-2000*	2000-2500*	2500-3000*

$pp \to t \bar{t} \gamma$	$pp \to t\bar{t}Z$
$pp \rightarrow tr\gamma$ $p_T^{\gamma} : (20-25)$ $p_T^{\gamma} : (25-30)$ $p_T^{\gamma} : (30-35)$ $p_T^{\gamma} : (35-40)$ $p_T^{\gamma} : (40-47)$ $p_T^{\gamma} : (47-55)$ $p_T^{\gamma} : (55-70)$ $p_T^{\gamma} : (70-85)$ $p_T^{\gamma} : (85-132)$	$pp \to ttZ$ $p_T^Z : (0-40)$ $p_T^Z : (40-70)$ $p_T^Z : (70-110)$ $p_T^Z : (110-160)$ $p_T^Z : (160-220)$ $p_T^Z : (220-290)$ $p_T^Z : (290-400)$
$p_T : (85-132)$ $p_T^{\gamma} : (132-180)$ $p_T^{\gamma} : (180-300)$	$p_T \cdot (200, 400)$

Additional bins added for HL-LHC

Noteby: One could include more differential information Difficulty is always to assign uncertainties

E.Vryonidou

Top2022, 8/9/22

E.Vryonidou

E.Vryonidou

E.Vryonidou

Best improvement: 4fermion operators driven by differential measurements extending to higher energies

Not much improvement $C_{\phi Q}^{-}$ and $C_{\phi Q}^{3}$ (dominated by bLEP)

Limited by theory and modelling uncertainties

2-quark-2-lepton not fitted (need $t\bar{t}\ell\bar{\ell}$)

E.Vryonidou

Lepton colliders

Scenarios considered:

Machine	Polarisation	Energy	Luminosity	Reference
		$250~{\rm GeV}$	2 ab^{-1}	
ILC	$P(e^+, e^-):(\pm 30\%, \mp 80\%)$	$500~{\rm GeV}$	4 ab^{-1}	[56]
		$1 { m TeV}$	8 ab^{-1}	
		$380 { m ~GeV}$	1 ab^{-1}	
CLIC	$P(e^+, e^-)$:(0%, ±80%)	$1.4 { m TeV}$	2.5 ab^{-1}	[57]
		$3 { m TeV}$	5 ab^{-1}	
		Z-pole	150 ab^{-1}	
ECC as	Unpolarised	$240~{\rm GeV}$	5 ab^{-1}	
гос-ее		$350~{\rm GeV}$	$0.2 \ {\rm ab}^{-1}$	[90]
		$365~{\rm GeV}$	$1.5 {\rm ~ab^{-1}}$	
		Z-pole	57.5 ab^{-1}	
CEDC	Unnelarized	$240~{\rm GeV}$	20 ab^{-1}	
UEPU	Unpotarised	$350~{\rm GeV}$	$0.2 \ {\rm ab}^{-1}$	[၁၀]
		$360~{\rm GeV}$	1 ab^{-1}	

Observables:

 $e^+e^- \rightarrow b\bar{b}: \sigma_b, A^b_{FB}$ $e^+e^- \rightarrow t\bar{t}:$ optimal observable constraints from arXiv:1807.02121 for ILC, CLIC, FCC-ee, CEPC

Optimal observables based on WbWb distribution

Input from arXiv:1807.02121 bounds for ttZ and top-lepton 4F operators

ttH is not included here for ILC and CLIC

Putting everything together

No improvement for top Yukawa due to missing *ttH* (expect factor of two improvement for ILC1000)

No bounds for 2Q2I operators at the (HL)LHC, no 4Q bounds for lepton colliders Runs above ttbar threshold needed for constraining 2Q2I well **Extremely well bounded at ILC and CLIC (** 10^{-3} **)**

Correlations

Correlation for HL- LHC, Tevatron, LEP and the final stage of FCC-ee fit

E.Vryonidou

Pushing the energy frontier

How about the FCC-hh?

No full study but expect much better sensitivity:

LHC14

 $\sigma(m_{t\bar{t}} > 1.4 \text{ TeV}) = 1.8 \text{ pb} \times [1 + 0.3 \cdot C_{tG} + 0.1 \cdot C_{tG}^2 + 0.1 \cdot C_{tu}^8 + 0.3 \cdot (C_{tu}^8)^2 + \dots]$

FCC-hh

 $\sigma(m_{t\bar{t}} > 10 \text{ TeV}) = 0.1 \text{ pb} \times [1 + 0.3 \cdot C_{tG} + 1.8 \cdot C_{tG}^2 + 3 \cdot C_{tu}^8 + 256 \cdot (C_{tu}^8)^2 + \dots]$

Expect bounds to improve from $\mathcal{O}(1\text{TeV}^{-2})$ down to $\mathcal{O}(0.1\text{TeV}^{-2})$

Pushing the energy frontier

How about the FCC-hh?

No full study but expect much better sensitivity:

LHC14

$$\sigma(m_{t\bar{t}} > 1.4 \text{ TeV}) = 1.8 \text{ pb} \times [1 + 0.3 \cdot C_{tG} + 0.1 \cdot C_{tG}^2 + 0.1 \cdot C_{tu}^8 + 0.3 \cdot (C_{tu}^8)^2 + \dots]$$

FCC-hh

 $\sigma(m_{t\bar{t}} > 10 \text{ TeV}) = 0.1 \text{ pb} \times [1 + 0.3 \cdot C_{tG} + 1.8 \cdot C_{tG}^2 + 3 \cdot C_{tu}^8 + 256 \cdot (C_{tu}^8)^2 + \dots]$

Expect bounds to improve from $\mathcal{O}(1\text{TeV}^{-2})$ down to $\mathcal{O}(0.1\text{TeV}^{-2})$

Future directions for top projections

Improving projections fits:

- Additional potentially sensitive top observables: spin correlations, differential information in other channels (for HL-LHC)
- Add colour singlet 2-light-2-heavy operators
- Add 4-heavy operators
- Check impact of quadratic terms

More operators, more observables, new probes

The future of 4tops

			4-heavy		
\mathcal{O}_{QQ}^1	cQQ1	$2[C_{qq}^{(1)}]^{3333} - \frac{2}{3}[C_{qq}^{(3)}]^{3333}$	\mathcal{O}^{8}_{QQ}	cQQ8	$8[C_{qq}^{(3)}]^{3333}$
\mathcal{O}_{Qt}^1	cQt1	$[C^{(1)}_{qu}]^{3333}$	\mathcal{O}_{Qt}^{8}	cQt8	$[C_{qu}^{(8)}]^{3333}$
\mathcal{O}_{tt}^1	ctt1	$[C_{uu}^{(1)}]^{3333}$			

HL-LHC differential information helps FCC needed to really pin down these coefficients

See Hesham's talk

Anything else we can do?

4-heavy operators in top pair production

At NLO:

c_{QQ}^8	$0.0586^{+27\%}_{-25\%}$	$0.125^{+10\%}_{-11\%}$		$0.00628^{+13\%}_{-16\%}$	$0.0133^{+7\%}_{-5\%}$
c_{Qt}^8	$0.0583^{+27\%}_{-25\%}$	$-0.107(6)^{+40\%}_{-33\%}$		$0.00619^{+13\%}_{-16\%}$	$0.0118^{+8\%}_{-5\%}$
c_{QQ}^1	$[-0.11^{+15\%}_{-18\%}]$	$-0.039(4)^{+51\%}_{-33\%}$	$[-0.12^{+7\%}_{-5\%}]$	$0.0282^{+13\%}_{-16\%}$	$0.0651^{+5\%}_{-6\%}$
c_{Qt}^1	$[-0.068^{+16\%}_{-18\%}]$	$-2.51^{+29\%}_{-21\%}$	$[-0.12^{+3\%}_{-6\%}]$	$0.0283^{+13\%}_{-16\%}$	$0.066^{+5\%}_{-6\%}$
c_{tt}^1	×	0.215^{+3}_{-}	23% 18%	×	×

Degrande, Durieux, Maltoni, Mimasu, EV, Zhang arXiv:2008.11743

Loop-induced sensitivity Complimentary information to ttbb and 4top production

One-loop probes (1)

4-heavy operators in EWPO

95% CL limits on 3rd generation 4-fermion operators

Dawson and Giardino arXiv: 2201.09887

New loop-induced sensitivity Competitive to 4top production

E.Vryonidou

Top2022, 8/9/22

One-loop probes (2)

4-heavy operators in Higgs production

Conclusions

- HL-LHC can improve bounds on top operators due to extended kinematic reach and reduced uncertainties
- HL-LHC improves Wilson coefficients by a factor three
- Degeneracies between 4-fermion operators persist
- Lepton colliders can constrain top operators very well if they run above the threshold, in particular the 2-quark-2-lepton operators
- FCC-hh is expected to further improve 4-quark operator bounds which remain poorly constrained due to degeneracies
- One loop probes for 4-heavy operators can be a promising new direction

Thank you for your attention