

Experimental summary

<u>Elizaveta Shabalina</u> University of Göttingen

15th International Workshop on Top-Quark Physics (TOP2022)

September 4-9 2022, Durham, UK

09/09/2022

GEORG-AUGUST-UNIVERSITÄT Göttingen

Highlights and trends Top2022

Personal biased selection

She is doing her best

Highlights and trends Top2022

Personal biased selection

- First top pair cross section measurement by CMS at 13.6 TeV with <8% precision after 2 months of data taking!</p>
- 4-top search in all-hadronic final state
 - never thought it is possible
- Top mass with profiling... What uncertainty we expect for full run 2 ?
- No discussion "What mass do we measure?"
 - do we finally have the answer?
- Almost no dedicated discussion of MC modelling and uncertainties
- ATLAS announced discovery of new uncertainty: recoil to colour in PS
- MVA routinely everywhere: event reconstruction, 2 and multiclass
- New trends in top properties measurements:
 - unfolding instead of template fits
 - more and more using t+X events in addition to top pair/single top
 - analysis with boosted objects
- The most frequently pronounced words
 - "off-shell effects", "bb4l"

Top pair production

Top cross sections

P.Hansen

ATLAS+CMS combination 7/8 TeV

- inputs: eµ channel with best precision
- CONVINO tool to combine counting and PL fit

Reduced uncertainty on xg(x) by 5% at x=0.1 0.95 $Q^2 = 10000 \text{ GeV}^2$ ATLAS \rightarrow ATLAS \rightarrow

Measurement in eµ channel

P.Hansen

- □ Full Run 2 data set
- Inclusive and 8 2D distributions
- Same method as in previous measurements
- For differential applied in each bin

$$N_{1} = L\sigma_{t\bar{t}} \epsilon_{e\mu} 2\epsilon_{b}(1 - C_{b}\epsilon_{b}) + N_{1}^{bkg}$$
$$N_{2} = L\sigma_{t\bar{t}} \epsilon_{e\mu} C_{b}\epsilon_{b}^{2} + N_{2}^{bkg}$$

 $\sigma_{t\bar{t}} = 836 \pm 1(stat) \pm 12(syst) \pm 16(lum + E_{cms})$ 2.4% uncertainty

- Largest uncertainties from luminosity and Wt
- No improvement in precision compared to 36/fb result Have we reached precision limit?
 - Wt systematics is a limiting factor in many measurements and searched
 - Tension between data and prediction in lepton pT.
 - Reweighing of top pT in PH+P8 to reproduce the NNLO improves agreement
 - Same effect in $\Delta \Phi$ vs m^{eµ}

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

Single lepton final state

P.Hansen

- CMS analysis included resolved and boosted topologies
- Inclusive, parton and particle level cross sections
- Expanded phase space compared to dilepton channel

 $\sigma_{t\bar{t}} = 791 \pm 1 \text{ (stat)} \pm 21 \text{ (syst)} \pm 14 \text{ (lumi) pb}$

All studied MC have problems in 2D distributions, especially for variables related to radiation, not covered by fixed-order calculations

ATLAS

 $\sqrt{s} = 13 \text{ TeV}$. 139 fb⁻¹

Fiducial parton level

2

reproduce data

Measurements in boosted topology

Single lepton channel

All-hadronic channel

P.Hansen J. Jamieson

- Significant reduction of JES uncertainty due to in-situ JES calibration
- Problems with modelling additional jets and 2D distributions and azimuthal distances to hadronic top

pT of leading additional jet

p_r^{tt} [TeV]

Electroweak top production

 \mathcal{U}

Single top production

 \overline{b}

s-channel cost section

A.S.Rodrigues J.Kempster

- q W t \bar{q}' \bar{b}
- Observed at Tevaton combining D0 and CDF
- Very complicated at LHC: small cross section, large and different backgrounds
- Matrix Element technique to separate S/B

• Result:

(_		_	× 1 2	4		<u>ີ</u> - າ
I.	$\sigma_{ m meas.}$	=	8.2	\pm	0.6	(stat	t.)+3 _2	:4 .8 (S	syst.) pb 🛛
К		_		_						/

• Compatible with SM prediction:

NLO: $\sigma_{\text{pred.}} = 10.32^{+0.40}_{-0.36} \text{ pb}$ Hathor v2.1

Significance 3.3 (3.9) obs.(exp)

dominated by modelling and JES

Source	$\mid \Delta \sigma / \sigma \ [\%]$
$t\bar{t}$ normalisation Jet energy resolution Jet energy scale Other s-channel modelling	$ \begin{array}{r rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

not clear if Run 3 will help

Wt channel

Inclusive and differential cross section in eµ channel

12

A.S.Rodrigues

tt+X production

ttγ production

J. van der Linden

New CMS measurement in dilepton channel

Precision 4%

Prediction from MG5aMC (LO+NLO k-factor) is lower

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

ttZ measurements

Channel	$\mu_{t\bar{t}Z}$
Trilepton	$1.17 \pm 0.07 \text{ (stat.)} {}^{+0.12}_{-0.11} \text{ (syst.)}$
Tetralepton	1.21 ± 0.15 (stat.) $^{+0.11}_{-0.10}$ (syst.)
Combination $(3\ell + 4\ell)$	1.19 ± 0.06 (stat.) ± 0.10 (syst.)

- Precision 10%
- Slightly higher than prediction

J. van der Linden

Measurement of ttZ(bb) and ttH(bb) in boosted regime

 $\mu_{t\bar{t}Z}$

ttW measurement

J. van der Linden

2-lepton Same Sign and tri-lepton final states

Assumed ttW SM σ_{ttW} = 592 fb

Combined cross section corresponds to $\mu_{ttW} = 1.47$

 $R(ttW+/ttW-) = 1.61 \pm 0.15 (stat)^{+0.07}/_{-0.05} (syst)$

Significant deviation from prediction for ttW+/ttWratio = 1.94+0.37-0.24

t+X production

tZq production

tqy production

J.Lambert

Largest background from tty

First evidence from CMS using ~36/fb of data
 New ATLAS analysis with full run 2 data

Signal regions (NN)

~40% higher that prediction

Parton level cross section: Particle level cross section $\sigma(tq\gamma) \mathcal{B}(t \to \ell \nu b) = 580 \pm 19(\text{stat.}) \pm 63(\text{syst.})\text{fb}$ $\sigma(tq\gamma) \mathcal{B}(t \to \ell \nu b) + \sigma(t \to \ell \nu b \gamma)q = 287 \pm 8(\text{stat.})^{+32}_{-31}(\text{syst.})\text{fb}$

Compatible with the SM within $2.5(1.9)\sigma$ at parton(particle) level

t+X summary

J.Lambert

tt+X production

21

4-top searches

J. van der Linden

Heaviest particle final state Many different final states

Measured cross-section: $\sigma(\text{tttt}) = 24 + 7/_{-6} \text{ fb} (4.7\sigma)$ Predicted NLO QCD+EW: $\sigma(\text{tttt}) = 12.0 + 2.2/_{-2.5} \text{ fb}$ Compatible within 2σ

4-top

Channels with large tt+bb and multi jet (all-hadronic) backgrounds

1-lepton, 2-lepton OS, all-hadronic channels

J. van der Linden M. Quinnan N. Manganelli

Expected and observed cross section best fit ($\mu = \sigma_{\text{thir}}/\sigma_{\text{thir}}^{\text{SM}}$

4-top summary

Significance

N. Manganelli

CMS-PAS-TOP-21-005

CMS Preliminary ATLAS 138 fb⁻¹ (13 TeV) Observed tot. Expected Expected Observed stat. 1+0.9 1.2+0.9 SL +1.6 -1.2 $\left(\begin{array}{c} +0.7 \\ -0.7 \end{array} , \begin{array}{c} +1.5 \\ -1.0 \end{array} \right)$ 2.2 1L/2LOS 1+1.3 1.9+1.4 OSDL 1+2.5 5.8+2.5 All-hadronic **2.0** $^{+0.8}_{-0.6}$ ($^{+0.4}_{-0.4}$, $^{+0.7}_{-0.4}$) 2LSS/3L 1+0.4 1.0+0.5 SSDL&ML +0.8 -0.6 $(\begin{array}{c} +0.4 \\ -0.4 \end{array}, \begin{array}{c} +0.7 \\ -0.5 \end{array}$ 2.0 Combined Combined 1.4+0.4 1+0.4 resul 10 11 12 13 14 0 2 3 5 6 8 -2 -1 8 9 15 0 1 2 3 4 5 6 7 4 Expected and observed cross section best fit ($\mu = \sigma_{tit\bar{t}}/\sigma_{tit\bar{t}}^{SM}$) expected significance: 2.6 σ expected significance: 3.2 o observed significance: 3.9 o observed significance: 4.7 σ

ATLAS JHEP 11 (2021) 118

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

Top quark properties

Many recent and new measurements
 Now measured not only in ttbar but also in tt+X events
 Main trend —> use unfolding

Top spin Top polarisation Asymmetries B-fragmentation Color reconnection CP properties mass

GEORG-AUGUST-UNIVERSITÄT Göttingen

Top polarisation

M.Watson

Top quarks in t-channel are strongly polarised

t-quark along spectator quark direction

anti-t opposite incoming quark direction

Signal regions defined by sign of $\cos \theta_{li}$ and lepton charge

Template fit result: strong polarisation along z-axis

Top polarisation

Unfolded angular distributions to particle level compared to MC predictions

M.Watson

W polarisation in top events

Right (f_R)

W

Longitudinal (f_O)

Probe of Wtb vertex

New method in dilepton channel: mesure absolute and normalised differential distributions in $\cos \theta^*$

Left (f_L)

W

$f_0 =$	0.684 ± 0.015 (stat. + syst.)
$f_{\rm L}$ =	0.318 ± 0.008 (stat. + syst.)
$f_{\rm R} = -$	-0.002 ± 0.015 (stat. + syst.)

Systematically dominated measurement

M.Watson

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

Charge asymmetry in tt

D.Schwarz

□ Central-forward in ttbar events
□ No asymmetry at LO
□ Higher order effects in qq⁻ → t⁻t

Boosted regime, two Mt⁻t bins: [750, 900], [900, ∞]

Good agreement with prediction

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

Charge asymmetry in tt

- Single and dilepton channels
- Resolved and boosted regime
- $A_{tt} = 0.0068 \pm 0.0015$ (stat+syst.).

Expect improvement with additional data

T.Dado

B.Eskerova

J.Keaveney

Energy asymmetry in tt

T.Dado J.Keaveney

Asymmetry between the energies of top and anti-top
 Measured in tt+j events in boosted regime

$$A_{E}(\theta_{j}) \equiv \frac{\sigma^{\text{opt}}(\theta_{j} | \Delta E > 0) - \sigma^{\text{opt}}(\theta_{j} | \Delta E < 0)}{\sigma^{\text{opt}}(\theta_{j} | \Delta E > 0) + \sigma^{\text{opt}}(\theta_{j} | \Delta E < 0)}$$

 $\sigma^{\mathrm{opt}}(\theta_j) = \sigma(\theta_j | y_{t\bar{t}j} > 0) + \sigma(\pi - \theta_j | y_{t\bar{t}j} < 0)$

Angle between the jet and z-axis

Effect increases with jet pT

Asymmetry in tty and ttW

ttγ

J. van der Linden, T.T.Tran, A.Rey, J.Keaveney $extsf{tw}$

- Asymmetry from ISR/FSR interference
- Similar definition as in tt
- Much lower statistics, 2 bins

 $A_c = -0.006 \pm 0.024(stat) \pm 0.018(syst)$

in agreement with prediction from MG5aMC

 $A_c = -0.014 \pm 0.001$ (scale)

- Expected to be larger than in tt due qq initial state
 - 3-lepton channel, lepton as proxy for top

Fiducial result unfolded to particle-level:

 $A_c = -0.112 \pm 0.170 \text{ (stat)} \pm 0.055 \text{ (syst)}$

in agreement with Sherpa NLO+EW simulation

Statistically dominated analyses, Run 3 data will help

GEORG-AUGUST-UNIVERSITÄT Göttingen

CP violation in ttbar

Construct 4 CP-sensitive observablesDefine and measure asymmetry

$$A_{\rm CP} = \frac{N(O_i > 0) - N(O_i < 0)}{N(O_i > 0) + N(O_i < 0)}$$

i = 3, 6, 12, 14

In agreement with SM value of zero x3 improvement of precision

Properties for MC tuning

Color reconnection

Several sensitive variables

B-fragmentation

T.Dado

S.Wahdan

vs=13 TeV, 139 fb⁻¹

PP8 CR0

PP8 CR1

PP8 CR2

80

100

n_{ch}

- Data

60

Good agreement for all MC simulations except Sherpa

No ideal model

20

40

ATLAS Preliminary

OS eµ, 2 or 3 jets

Normalised

Shower returning including CR model is necessary

 $\frac{1}{\sigma} \frac{d\sigma}{dn_{ch}}$

0.03

0.02

0.01

1.5

0.5

Pred. Data

Unfolded to stable tracks

Top quark mass

Top mass

Direct

from reconstruct invariant mass of top quark decay products

- Most precise (~0.3 GeV)
- Depends on the details of the MC simulation

- CMS: tt+jets (36/fb)
- CMS: single top t-channel
- ATLAS ttbar soft muon tagging
- ATLAS ttbar dilepton

 $\begin{array}{c} \text{Indirect} \\ \text{measure observable directly} \\ \text{sensitive to } m_t \ (e.g. \ \sigma_{tt}) \end{array}$

- Compare to theory prediction in well-defined renormalisation
 scheme (pole, MS, MSR)
- Can be sensitive to soft-gluon effects at threshold, where mass sensitivity is the highest
- ATLAS+CMS: m_t pole from combined σ_{tt} 7+8 TeV
- CMS: mass from tt+1j invariant mass
- CMS: m_t running @NNLO revisited

"Third"

jet mass in boosted top decays can be calculated using SC-EFT

 \rightarrow can provide info on relation between m ^{MC} and m (MSR)

 CMS: top mass from boosted jet mass

Top mass from σ_{tt}

M.Defranchis

CT14

🗮 MMHT14

0.12

NNPDF3.1 a

NNLO+NNLL

0.122

 $\alpha_{s}(m_{z})$

Simultaneous fit of NNLO+NNLL (Top++) prediction to combined 7+8 TeV σ_{tt}

PDF set	m_t^{pole}	$\alpha_{\rm s}(m_Z)$
	$(\alpha_{\rm s} = 0.118 \pm 0.001)$	$(m_t = 172.5 \pm 1.0 \text{ GeV})$
CT14	174.0 ^{+2.3} _{-2.3} GeV	$0.1161 \begin{array}{c} +0.0030 \\ -0.0033 \end{array}$
MMHT2014	174.0 ^{+2.1} _{-2.3} GeV	$0.1160 \begin{array}{c} ^{+0.0031}_{-0.0030}$
NNPDF3.1_a	173.4 ^{+1.8} _{-2.0} GeV	$0.1170 \begin{array}{c} ^{+0.0021}_{-0.0018}$

Earlier measurements from σ_{tt} at 13 TeV using dileptonic events are similar in terms of central values and systematics

PDF does not contain top quark measurements

Top mass from tt+jet events

Invariant mass of tt+1jet system sensitive to value of m, near the production threshold

Similar precision as ATLAS 8 TeV result:

GEORG-AUGUST-UNIVERSITÄT

GÖTTINGEN

M.Defranchis

S.Wuchterl

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

Boosted/running

M.Defranchis Top mass from boosted jet mass Running top mass @NNLO D.Schwarz XCone exclusive algorithm to reconstruct jets 1.05 m^t(m^m), m^t(m^t), m^t and sub-jets \rightarrow improved resolution Dedicated calibration of FSR using substructure variables, and dedicated jet mass calibration 0.95 x3 improvement over CMS 2016 analysis! ¢ 0.9 Comparable precision to direct measurements 0.85 200 250 138 fb⁻¹ (13 TeV) 0.04 GeV CMS Data Preliminary $m_{\rm t} = 169.5 \, {\rm GeV}$ using MATRIX m, = 172.5 GeV m, = 175.5 GeV -10 Improved fit 0.02 1.05 0.01 1.00 0 $m_{\rm t}(\mu_{\rm m}) / m_{\rm t}(\mu_{\rm ref})$ Theory Data 1.5 0.5 120 140 160 180 200 220 CMS data at $\sqrt{s} = 13$ TeV m_{jet} [GeV] ABMP16 5 nnlo PDF set 0.85

 $m_{\rm t} = 172.76 \pm 0.22 \, ({
m stat}) \pm 0.57 \, ({
m exp}) \pm 0.48 \, ({
m model}) \pm 0.24 \, ({
m theo}) \, {
m GeV}$ $= 172.76 \pm 0.81$ GeV.

CMS Supplementary arXiv:1909.09193 35.9 fb⁻¹ (13 TeV) ABMP16_5_nlo PDF set $\mu_{ref} = 238 \text{ GeV}$ $\mu_0 = \mu_{ref}$ NLO with bin-by-bin dynamic scale NLO with static scale [PLB 803 (2020) 135263] Reference scale μ_{ref} One-loop RGE, n = 5, $\alpha_{s}(m_{-}) = 0.1191$ 300 350 400 450 500 $\mu_{m} = \mu_{\nu}/2$ [GeV]

- NNLO prediction in MS scheme using
- Reduction of scale uncertainties

Summary: indirect measurements

M.Defranchis

Results obtained with different methods overall in good agreement

- CMS result from 3D cross section is the most precise result, to date, but may be significantly affected by threshold effects (can be 1.4 GeV).
- No consensus in theory community on the size of the effect

Theoretical advances needed in order to obtain accurate and unambiguous results

CMS measurements

It I+jets: profile LH fit to 5 observables in different event categories M. Vanadia

Most precise measurement to date with 0.38 GeV uncertainty

- Significant pull and constraint of FSR PS scale q->qg due to mw^{reco}
- Alternative correlation scheme 172.14 ± 0.31 GeV

[□] t-channel single top: ML fit to $\zeta = \ln(m_t/1 \text{ GeV})$

$$m_{t} = 172.13^{+0.76}_{-0.77} \text{ GeV}$$

$$R_{m_{t}} = \frac{m_{\bar{t}}}{m_{t}} = 0.9952^{+0.0079}_{-0.0104}$$

$$\Delta m_{t} = m_{t} - m_{\bar{t}} = 0.83^{+1.79}_{-1.35} \text{ GeV}$$

4 I

GEORG-AUGUST-UNIVERSITÄT Göttingen

ATLAS SMT mass

Top mass using soft muon tag

M. Vanadia

- Invariant mass $m_{l\mu}$ sensitive to m_t
- reduced sensitivity to JES
- sensitive to fragmentation modelling
- preliminary result shown at Top2019

consistent at 2σ level with previous results

 \overline{q}

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

ATLAS SMT mass

consistent at 2o level with previous results

realistic estimate of the effect

Theory input is welcome

M. Vanadia

W

W

 $m_{top}^{dilepton} = 172.63 \pm 0.20 \text{ (stat)} \pm 0.67 \text{ (syst)} \pm 0.37 \text{ (recoil) GeV}$

 Dominant uncertainties from modelling (ME algorithm, ISR/FSR, color reconnections) and JES

GEORG-AUGUST-UNIVERSITÄT

• Large effect of recoil uncertainty

Ttbar modelling is the largest challenge for future measurements Require input from theory and experiments

Searches for FCNC

Improved limit by factors 3.3 to 5.4 from previous analysis

Coupling	BR limit Expected	ts [10 ⁻⁵] Observed
$t \rightarrow u\gamma LH$	$0.88^{+0.37}_{-0.25}$	0.85
$t \rightarrow u\gamma \mathrm{RH}$	$1.20^{+0.50}_{-0.33}$	1.22
$t \rightarrow c \gamma LH$	$3.40^{+1.35}_{-0.95}$	4.16
$t \rightarrow c\gamma \mathrm{RH}$	$3.70^{+1.47}_{-1.03}$	4.46

$\mathcal{B}(t)$	$\rightarrow Zq)$ [10	$)^{-5}]$
tZu	LH	6.2
tZu	RH	6.6
tZc	LH	13
tZc	RH	12

Improved limit by factors 3 to 5 from previous analysis

Improved limit by x2 from 8 TeV analysis

$$\mathcal{B}(t \to u + g) < 0.61 \times 10^{-4}$$

$$\mathcal{B}(t \to c + g) < 3.7 \times 10^{-4}$$

Large impact from systematics

$$\begin{array}{l} \mathcal{B}(t \rightarrow uH) \\ \mathcal{B}(t \rightarrow cH) \\$$

All searches except tgq are statistically limited

gained sensitivity by including regions sensitive to couplings in top production and decay

EFT fits: multidimensional management problem

- Many Top analysis include and even designed to provide EFT interpretations
- Global fit is the goal but there are many steps to go and

Practical difficulties

- Different statistical methods (IBU vs FBU, PL vs toys, ...)
- Proper treatment of statistical and systematic correlations
- Measurements delivered on different timelines
- ► Interpretations: different assumptions on "backgrounds"
 → EFT effects Hard without coordination!

□ Signal model :

- SMEFT@LO or @NLO?
- Which operators?
- Linear/quadratic terms?
- EFT uncertainties and validity constraints
- Run 3 is a good opportunity to solve these issues and perform a global fit across different physics groups and experiments

J.McFayden

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00[⊥]

New ideas: yy collider

B.Lopez M.Pitt

Precision Proton Spectrometer to tag protons

observed 0.59 pb (expected 1.14 pb)

Run 3 started!

- □ LHC will resume running in 2 weeks
- D Top quark is still there!
- Allows to exercise the analysis chain and validate the performance of all components

Events / bin

<u>Data</u> Pred.

10⁵

10⁴

10

10²

10

Assuming ~250/fb per experiment at 13.6 TeV and cross section ~920 pb (tt) + ~330 pb (t) run 3 will provide twice more ttbar and single top data sets

Machine learning in Top

F.Kiecher

Conclusions

- ML has significant role in top physics!
- Wide array of strategies and applications, very active field of research
 - CMS example [CMS-TOP-21-001]
 - ATLAS example [ATLAS-CONF-2022-049]
- Many new developments on-going
 - DCTR [PhysRevD.101.091901]
 - But also much more! E.g. [TOP22, M. Fenton]

Conclusions

- Many results with full run 2 data set have been presented
- □ What do we expect from run 3?
 - Measurements in t(t)+X final states and FCNC searches are statistically limited
 - More data will allow for reaching higher jet pT or higher masses sensitive to BSM and EFT parameters
- Global EFT fit should be the goal of run 3
 - □ from one parameter one analysis to many analysis/parameters/experiments
 - given the complexity of the task we have to put together a plan now
- and MC, MC, MC.... we have huge number of precisely measured differential distributions
 - when and how we will benefit from this information?
- Theoretical advancements are still necessary to improve simulation and to understand / reduce uncertainties

Thank you !

See you next year at Top 2023

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

Backup

3D mass and threshold effect

How big are threshold effects?

Short answer: we don't really know

A study by Li Lin Yang et. al. based on next-to-leading power resummation suggests that the effect in the CMS 3D analysis (previous slide) can be as large as +1.4 GeV

This would lead to $m_t^{pole} = 171.9 \pm 0.8$ GeV, in better agreement with other pole mass measurement

However, there is no consensus in the theory community on the presented NNLO+NLP results, and therefore we do not have a conclusive answer on the issue

- This is currently the **limiting factor** of indirect m, measurement at threshold at the LHC
- Hard to think of consistent ways to assess the size of such uncertainty in the absence of a calculation

JHEP 06 (2020) 158

Matteo M. Defranchis (CERN)