

THEORY SUMMARY

STEFANO FORTE UNIVERSITÀ DI MILANO & INFN

UNIVERSITÀ DEGLI STUDI DI MILANO

DIPARTIMENTO DI FISICA

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 740006

\dots The standard model is about 50 years old

C. Englert

FOUNDATIONAL ISSUES

TOP AS TEXTBOOK STANDARD MODEL PHYSICS

M. Watson

... EXPLOITING THE CHIRAL STRUCTURE OF VECTOR COUPLINGS

TOP AS TEXTBOOK QUANTUM MECHANICS

$$\begin{aligned} \frac{1}{\sigma} \frac{d\sigma}{d\cos\theta} &= a_+ \left[\frac{1}{\sigma} \frac{d\sigma}{d\cos\theta} \right]_+ + a_- \left[\frac{1}{\sigma} \frac{d\sigma}{d\cos\theta} \right]_- \\ \\ \text{with} \qquad \begin{aligned} a_+ &= (1+P_z)/2 = \rho_{\frac{1}{2}\frac{1}{2}} = \sigma_+/\sigma \\ a_- &= (1-P_z)/2 = \rho_{-\frac{1}{2}-\frac{1}{2}} = \sigma_-/\sigma \end{aligned} \qquad \begin{aligned} \text{Template} \\ \text{expansion} \end{aligned}$$

J. A. Aguilar Saavedra

UNDERSTANDING THE DENSITY MATRIX OF A QUBIT...

TOP AS TEXTBOOK QUANTUM MECHANICS ... AND USING IT TO MEASURE ENTANGLEMENT

L. Mantani

TOP MASS THEORY EXPERIMENT (M. Defranchis)

- RENORMALON AFFECTS RELATION BETWEEN POLE & $\overline{\rm MS}$ mass
- KINEMATIC OBSERVABLES DEPEND ON POLE MASS \Rightarrow ALL-ORDER QUANTITY MEASURABLE
- SHORT-DISTANCE COMPUTABLE PROPERTIES DEPEND ON $\overline{\rm MS}$ mass \Rightarrow finite-order quantity computable
- TRADEOFF:
 - DIRECT MEASUREMENTS DETERMINE ALL-ORDER QUANTITY CURRENTLY MOST ACCURATE
 - CROSS-SECTION "OFF-SHELL" MEASUREMENTS DETERMINE PERTURBATIVELY COMPUTABLE SHORT-DISTANCE QUANTITY

RENORMALON ESTIMATE OF REMAINDER (AMBIGUITY):

 $\Delta^{(5+)}m_p = 0.304^{+0.012}_{-0.063}(N) \pm 0.030(m_{b,c}) \pm 0.009(\alpha_s) \pm 0.108 \text{(ambiguity) GeV}$ 110 MeV ambiguity smaller than LHC accuracy but larger than future e^+e^- linear collider

(Beneke, Marquard, Steinhauser, Nason, 2017)

STRETCHING KNOWLEDGE

FIDUCIAL MEASUREMENTS TOP p_T DISTRIBUTION

- Good normalization
- Good shape → looks sometimes even better then POW+PYT

Invariant mass of lepton-pair + b-jet pair

R. Poncelet

Double and triple differential distributions probe the tensions with QCD models in detail. No model describe all these data well within experimental uncertainties.

The largest tension is in the number of additional jets, especially for high m_{tt} , in the case of FXFX+PYT and POW+HER.

P. Hansen

FIXED-ORDER COMPUTATION IN FIDUCIAL REGION AGREES BEAUTIFULLY WITH DATA

DETAILED DESCRIPTION OF FINAL STATES HEAVY QUARK JETS & FRAGMENTATION

- IRC FLAVOR JET TAGGING WITH ANTI- k_T
- FRAGMENTATION FUNCTION FITS
- FRAGMENTATION FUNCTIONS WITH B-DECAY

- Almost identical perturbative corrections for anti-kT and flavoured anti-kT
- Differences within NNLO scale dependence
 - \rightarrow small impact of IR problematic contributions in ttbar (NWA)

R. Poncelet, T. Generet

OFF-SHELL $t\bar{t}Z$

$pp \rightarrow e^+ v_e \mu^- v_\mu b b \tau^+ \tau^-$ full off-shell description

- NLO QCD corrections obtained in the HELAC-NLO framework [Bevilacqua et al., arXiv:110.1499]
 One-loop matrix elements with HELAC-1LOOP. Real radiation with HELAC-DIPOLES.
- EW G₁₁ input scheme (G₁₁, m₇, m_W). Other inputs: m_t, Γ_W , Γ_Z , Γ_t (LO, NLO, unstable-W and NWA)
- Unstable particles in complex mass scheme.
- Studied PDF dependence. Main results presented for NNPDF3.1
- Studied (μ_R, μ_F) scale dependence wrt to both a fixed and dynamical central scale (7-point variation)

• Specific signature studied:
$$e^+v_e\mu^-v_\mu bb\tau^+\tau^ \mu_0 = \frac{2m_t + m_Z}{2} \mu_0 = \frac{H_T}{3}$$
 for $H_T = \sum_i p_{T,i}$

- $p_T^{l} > 20 \text{ GeV}, |y_l| < 2.5, \Delta R_{ll} > 0.4$
- $p_T^b > 20 \text{ GeV}, |y_b| < 2.5, \Delta R_{bb} > 0.4$
- $p_T^{miss} > 40 \text{ GeV}$

J. Nasufi, L. Reina

NWA FAILS IN LARGE- p_T REGION

OFF-SHELL $t\bar{t}H$

- LARGE OFF-SHELL EFFECTS AT LARGE p_T
- ENHANCEMENT OF SINGLE-RESONANT CONTRIBUTION FOR CP-ODD HIGGS

MATCHING TO PS $t\bar{t}W$

LARGE SUPPRESSION EVEN AT INCLUSIVE LEVEL

M. Kraus

MATCHING TO PS $t\bar{t}Z$

L. Reina

- PARTIAL OFF-SHELL, MATCHING TO PS
- LARGE p_T SUPPRESSION AS IN FULL OFF-SHELL FO

RESUMMATION

- SOFT RESUMMATION STABILIZES PERTURBATIVE EXPANSION
- USEFUL APPROX FOR RARE PROCESSES WHERE FULL FO IS VERY HARD
- EXTENSION TO COMPLEX COLOR STRUCTURE

M. van Beekveld

THE SMEFT PARADIGM

L. Reina

- FUNDAMENTAL LAGRANGIAN COUPLINGS \Rightarrow EFFECTIVE LAGRANGIAN INTERACTIONS
- WHO OWNS THE SMEFT?

INTERPLAY BETWEEN OBSERVABLES STRENGTHENS CONSTRAINTS

Preliminary Results

L. Nollen

Toy fit: impact of differential information

We add information from m_{tttt} in three bins ...

differential information improves sensitivity

H. El Faham

MORE DIFFERENTIAL OBSERVABLES HAVE GREATER IMPACT

IMPROVEMENT IN ACCURACY AT HL-LHC

Difference in individual and marginalised limits persists at HL for 4-fermion operators

E. Vryonidou

GLOBAL SMEFT?

- INTERPLAY BETWEEN OBSERVABLES STRENGTHENS CONSTRAINTS
- MUST INCLUDE PDFs FOR ROBUST RESULTS

Marginalised 95% C. L. **Top-Higgs interplay** Higgs data (no $t\bar{t}H$) Higgs data Higgs & Top data G How do the constraints on $C_{HG}, C_{tG}, C_G, C_{tH}$ Higgs & Top data (+4F) -10 change as we include more top quark data? SM + -15 -20 -0.04 -0.02 0.00 0.02 0.04 We marginalise over $C_{H\Box}, C_{HW}, C_{HB}, C_{bH}, C_{\tau H}, C_{\mu H}$ (+ 4-fermion operators) • *ttH* removes the degeneracy between C_{HG}, C_{tH} . • top quark data substantially reduces the area constrained -4¹-0.04 -0.02 0.00 0.02 0.04 -4-20-15-10-5 0 5 10 15 at 95 % CL and suppresses some correlations. · this is true even when marginalising over all 4-fermion operators involving top quarks. ů

-20-15-10 -5 0

CtH

5 10 15

-4 -3 -2

-1 0 1 2

 C_{tG}

-0.04 -0.02 0.00 0.02 0.04

M. Madigan

- FLAVOR PHYSICS: REDUCE AND OPTIMIZE SET OF OPERATORS
- WET: INTEGRATE OUT DEGREES OF FREEDOM ABOVE THE EW SCALE

D. van Dyk

OPTIMAL SMEFT?

USE ML TOOLS TO OPTIMIZE CORRELATIONS?

• Can we impart Feynman-graph correlations on measurements to enhance BSM sensitivity?

... Graph Neural Networks

jet tagging [Dreyer, Hu ` 20] anomaly detection [Atkinson et al. ` 21]

C. Englert

OPTIMAL SMEFT FOR CPV

- SEARCH FOR CPV
- COMBINE MANY OBSERVABLES
- USE NN TO DETERMINE OPTIMIZED CONSTRAINT

A. Smolkovic

OPTIMIZED SMEFT AND ENTANGLEMENT

USE ENTANGLEMENT PATTERNS TO DETECT DEVIATIONS FROM SM $p_{\Psi^+} = \langle \Psi^+ |_{\boldsymbol{n}} \, \rho \, | \Psi^+ \rangle_{\boldsymbol{n}} \qquad \text{Probability triplet state}$

L. Mantani

DIRECT SEARCHES: FCNC

- FCNC INDUCED IN 2HDM, VLQ, ...
- SEARCHED DIRECTLY IN DECAYS

M. Nebot

DIRECT SEARCHES: 2HDM

FCNC FAVORED SEARCH MODE

DIRECT SEARCHES: TWIN HIGGS

- TWIN SM PARTNERS
- SEEN IN RARE PROCESSES

E. Salvioni

CONCLUSION LINES OF DEVELOPMENT & DESIDERATA

- THEORY AND EXPERIMENT COMING TOGETHER
 - EXPERIMENT: UNFOLDING VS. TEMPLATES
 - THEORY: FIDUCIAL PREDICTIONS
- **DESIDERATA** FOR EXPERIMENT
 - AVAILABILITY OF CORRELATIONS
 - RARE PROCESSES
 - LARGE p_T
- DESIDERATA FOR THEORY
 - FROM BSM models to signals
 - SMEFT vs. direct searches
 - UNDERSTAND RELEVANT CORRECTIONS

BEYOND CONCRETE

