

tt+X measurements at ATLAS and CMS

TOP2022 - 15th International Workshop on Top-Quark Physics

Jan van der Linden on behalf of the ATLAS and CMS Collaborations

tt+X measurements

- High precision inclusive/differential measurements of tt+γ/Z/W
 - High purities in lepton-dominated final states
 - Most lepton channels covered by ATLAS+CMS in RunII

- Searches for four top production
 - Low cross-section
 - Often difficult background (tt+heavy flavor, ttW)
 - Good coverage by ATLAS+CMS in RunII

- Measurements of tt+heavy flavor
 - Important background (tttt and ttH)
 - Not covered today

4

tt+ γ cross section measurement (CMS)

- Measurement of ttγ in OS2ℓ channel
- Fiducial region at particle level:
 - > 2 leptons (ee/µµ/eµ), ≥1 b-jet, one γ
- **G** Fit $p_T(\gamma)$ distribution for inclusive cross-section
- Backgrounds:

Also covered in <u>EFT talk</u> by Jon Wilson (Tuesday)

CMS.

- > non-prompt $\gamma \rightarrow$ data-driven estimation
- \succ Z $\gamma \rightarrow$ CR on Z peak
- > Others (e.g. t_{γ}) estimated from simulation
- Observed: σ(ttγ) = 175.2 ± 2.5(stat) ± 6.3(syst) fb
 - Precision of 4%
 - Dominated by luminosity, signal modeling, background normalization
- Agrees well with prediction (MG5aMC) $\sigma(tt\gamma) = 155 \pm 27$ fb (LO sim. + NLO k factor)
 - Slight underprediction possibly due to importance of γ in NLO calculations (JHEP 03 (2020) 154)

CMS tt_γ 2ℓ: <u>JHEP 05 (2022) 091</u>

tt+ γ cross section measurement (CMS)

- Differential measurement via unfolding to particle level with TUnfold
- Photon kinematics well-described by MG5aMC simulations
- □ Some trends in lepton observables and lepton+ γ observables
 - > Hints on mismodelling of γ origin in MG5aMC simulation

Charge asymmetry in tt+ γ (ATLAS)

- Probe charge asymmetry of top quarks and antiquarks
 - > Symmetrical in LO tt, small asymmetries from $qq \rightarrow tt$
 - > Enhanced in initial-state γ radiation (+interference)
 - > Diluted by symmetrical γ from tt decay
- Signal definition:
 - > only tt_{γ} production; decay is background
 - Single lepton channel
- $\Box \quad \text{Employ DNN to identify tt}_{\gamma} \text{ production}$
 - Used to split phase space in SR / CR
- Backgrounds:
 - > Fake $\gamma \rightarrow$ estimated on Z peak / photonID inversion
 - > Non-prompt \rightarrow data-driven from loose leptonID region
 - > Prompt γ and tt γ decay estimated from simulation

Charge asymmetry in tt+ γ (ATLAS)

- Probe charge asymmetry of top quarks and antiquarks
 - Construct asymmetry from top quark/antiquark rapidity

$$A_C = \frac{N(|y_t| > |y_{\bar{t}}|) - N(|y_t| < |y_{\bar{t}}|)}{N(|y_t| > |y_{\bar{t}}|) + N(|y_t| < |y_{\bar{t}}|)},$$

- □ Kinematic reconstruction of top quark pair > Fit performed in two bins of $|y_t| - |y_t|$ (Top quark or optiquark rapidity higher)
 - (Top quark or antiquark rapidity higher)
- □ Observed: A_c = -0.006 ± 0.024(stat) ± 0.018(syst)
 > Limited by data and MC statistics
 □ Agrees well with prediction (MG5amC)
 A_c = -0.014 ± 0.001(scale)

- Measurement of ttZ in multilepton channels
- □ Fit in lepton / jet / b-jet bins
- Backgrounds:
 - > Non-prompt \rightarrow data-driven
 - > WZ/ZZ → CRs on Z peaks in 3/4
 - Remaining (e.g. t(t)+X) estimated from MC
- Observed: σ(ttZ) = 0.99 ± 0.05(stat) ± 0.08(syst) pb
 - Precision of 10%
 - Dominated by PS modeling, backgrounds, b-tagging
- Agreement with NLO+NNLL calculation (<u>EPJC 79 (2019) 249</u>) $\sigma(\text{ttZ}) = 0.86 + 0.07 /_{-0.08} (\text{scale}) \pm 0.03 (\text{pdf+}\alpha_{\text{s}}) \text{ pb}$

- Differential measurement via unfolding to particle and parton level with RooUnfold
- □ Various observables in 3ℓ and 4ℓ channel
 - Probing tZ coupling, modeling of Z boson, top quark and additional radiation
- Compared to multiple simulations and NLO+NNLL calculation (JHEP 08, 039 (2019))
 - Similar trends for most simulations and calculations

ATLAS ttZ 3ł/4ł: EPCJ 81 (2021) 737

Boosted tt+Z/H cross section measurement (CMS)

138fb⁻¹

- Measurement of ttZ and ttH in boosted regime
 - Single lepton channel, Xbb final state
 - Sensitive to anomalous couplings in boosted regime
- □ Tag AK8 jets as Z/Hbb resonance
- DNN to separate signals from backgrounds
 - Fit performed in AK8 soft-drop mass and DNN bins
- Backgrounds dominated
 by tt+jets / tt+bb
 from simulation

CMS

Also covered in <u>EFT talk</u> by Jon Wilson (Tuesday)

CMS boosted ttZ/H: <u>CMS-TOP-21-003</u> (submitted to PRD)

Boosted tt+Z/H cross section measurement (CMS)

2 2D measurement of ttZ and ttH \rightarrow Results compatible with prediction

CMS

Also covered in <u>EFT talk</u> by Jon Wilson (Tuesday)

- > Low correlation (-10%) due to good separation of signals (soft-drop mass, DNN)
- Sensitivity limited by data statistics, tt+heavy flavor modeling and b/bb-tagging

tt+W cross section measurement (CMS)

- □ Measurement of **ttW in SS2ℓ/3ℓ regions**
- □ SS2{ region
 - > DNN to separate non-prompt, ttZ, tt γ from ttW
 - Fit DNN scores separated by lepton flavors
- □ 3ℓ region
 - Separate events in jet / b-jet regions
 - > Fit m_3 (leptons) in each region (best S/B separation)
- Backgrounds:
 - \blacktriangleright Non-prompt leptons \rightarrow data-driven estimation
 - \succ Charge misidentification of electrons \rightarrow from simulation
 - \succ WZ/ZZ/ttZ \rightarrow CR on Z peak

CMS ttW 2l/3l: <u>CMS-TOP-21-011</u> (submitted to JHEP)

tt+W cross section measurement (CMS)

- Measurement of ttW in 2?/3? regions
- Observed: σ(ttW) = 0.87 ± 0.04(stat) ± 0.05(syst) pb
 - Precision of 10%
 - Dominated by ttH background, luminosity, charge misID, b-tagging
- □ Measurement shows trend to higher values than calculations: NLO+NNLL: $\sigma(ttW) = 0.59 +0.16 /_{-0.10} pb$ (EPCJ 80 (2020) 428) NLO+FxFx: $\sigma(ttW) = 0.72 +0.07 /_{-0.08} pb$ (JHEP 11 (2021) 29)
- □ Also measure ttW⁺ and ttW⁻ cross sections and ratio
 - Large difference expected due to qq initial state
 - > $R(ttW^{+}/ttW^{-}) = 1.61 \pm 0.15 (stat)^{+0.07}/_{-0.05} (syst)$

CMS ttW 2l/3l: <u>CMS-TOP-21-011</u> (submitted to JHEP)

tt+W charge asymmetry (ATLAS)

- Probe charge asymmetry of top quarks and antiquarks
 - ttW enhances qq initial state
 - Use charged leptons from top decays as proxy for top quarks
 - BDT for correct lepton identification
- **\Box** Fit event yields in $\pm \Delta \eta^{\ell}$ regions
 - □ 3ℓ channel

Also covered in <u>YSF talk</u> b Marcos Lopez (Tuesday) and <u>Joker talk</u> by James Keaveney (Thursday)

- Fiducial result unfolded to particle-level:
 - A_c = -0.112 ± 0.170 (stat) ± 0.055 (syst)
 - Limited by signal and ttZ modeling and data statistics
- Compare to generator prediction (sherpa NLO QCD+EW):
 - □ $A_c = -0.063 + 0.007 /_{-0.004}$ (scale) ± 0.004 (MC stat)
- Also confirms ttW norm. offset between simulation and data from other measurements ATLAS ttW charge asymmetry: <u>ATLAS-CONF-2022-062</u>

 $A_c^t =$

 $\frac{N\left(\Delta_{y}^{t} > 0\right) - N\left(\Delta_{y}^{t} < 0\right)}{N\left(\Delta_{y}^{t} > 0\right) + N\left(\Delta_{y}^{t} < 0\right)}$

139fb⁻

16

- ☐ Multi-lepton + SS2ℓ channel
- □ Fit of BDT output in combined region
- Backgrounds:
 - > Non-prompt leptons \rightarrow data-driven
 - \succ ttW+jets \rightarrow dedicated CR
 - > Other ttX \rightarrow estimated from simulation
- Measured signal-strength:

 μ (tttt) = 2.0 ± 0.4(stat) ^{+0.7}/_{-0.4}(syst) (4.3 σ)

- Limited by data statistics, signal and ttW modeling
- Evidence for four top from this channel alone!

□ 1ℓ + OS2ℓ channel

- Separated into jet / b-jet SRs and CRs
 - > Fit of BDT output distribution in SRs and H_{T} in CRs
 - Also using AK10 jet features as BDT input
- Background mostly tt+jets
 - Estimation/reweighting from low b-jet CRs
 - Bad modeling at high b-jet regions
- □ Measured signal-strength:

 μ (tttt) = 2.2 ± 0.7(stat) +1.5/_{-1.0}(syst) (1.9 σ)

Dominated by signal and tt+b/c modeling and jets

□ Larger than NLO QCD+EW calculation (JHEP 02 (2018) 031) σ (tttt) = 12.0 +2.2/_{-2.5} fb > Compatible within 2 σ

BSM four top search (ATLAS)

G $Search for ttH/A \rightarrow tttt$

- > New heavy scalar H/A boson in H/A \rightarrow tt decay
- SS2? final state (follows analysis strategy in <u>EPJC 80 (2020) 1085</u>)
- Baseline: Same BDT for four top identification
 - SR defined based on BDT output
- Additional mass-parameterized BDT for BSM identification
- Limits on BSM signal
 - > m(H/A) range [400−1000] GeV
 - No excesses observed

OS2? channel

- > Fit H_{τ} (jets) distributions in lepton / jet / b-jet categories
- Low jet/b-jet categories function as CRs

□ 1ℓ channel

- BDT for signal / background separation
- Resolved top tagger as BDT input
- Lepton / jet / b-jet / top candidate regions

All-hadronic channel

- ➢ First time the all-hadronic channel is used in four top searches!
- Fit output of BDT for signal / multijet separation
- > Categories of resolved / boosted top candidates and H_{T}
- Data-driven estimation of multijet / tt+jets backgrounds
- Backgrounds: tt+jets / tt+bb (+ multijet in all-hadronic channel)

CMS four top 0l/1l/OS2l: CMS-PAS-TOP-21-005

	Analysis	Signal strength		Significanc	
		exp	obs	exp	obs
	OSDL	$1^{+1.4}_{-1.3}$	$1.6^{+1.4}_{-1.3}$	0.79	1.27
	Single lepton	$1^{+0.87}_{-0.81}$	$1.2^{+0.9}_{-0.9}$	1.24	1.43
	All-hadronic	$1^{+2.5}_{-2.4}$	$5.8^{+2.5}_{-2.4}$	0.42	2.46
	New results only	$1^{+0.70}_{-0.66}$	$2.5^{+0.7}_{-0.7}$	1.52	3.88
<u>3) 031</u>)	SSDL & multilepton	$1^{+0.45}_{-0.40}$	$1.1^{+0.5}_{-0.4}$	2.70	2.56
	All CMS 2016-2018	$1^{+0.36}_{-0.34}$	$1.4\substack{+0.4 \\ -0.4}$	3.21	4.01

- Combined signal-strength and significance: $\mu(tttt) = 1.4 \pm 0.4 (4.0\sigma)$
 - Limited by data statistics and ttbb background modeling
- Compatible with NLO QCD+EW calculation (JHEP 02 (2018) 031) $\sigma(\text{tttt}) = 12.0^{+2.2}/_{-2.5} \text{ fb}$

Summary

- High precision inclusive/differential measurements of $tt+\gamma/Z/W$
 - Inclusive cross-sections established at 5–10% level
 - Many differential measurements
 - Important input for modeling of processes
 - Interpretations in EFT/BSM scenarios
 - Also: Collaboration of CMS+ATLAS on modeling of tt+W process (HiggsXSWG)

Searches for **four top production**

- Well-established evidence by ATLAS & CMS
- Analyzed full RunII in almost all top decay channels
- Observation by the individual experiments within reach

<u>Public ATLAS TOP Results</u> <u>Public CMS TOP Results</u> <u>LHCTopWG Summary Plots</u>

Backup

tt+ γ cross section measurement (CMS)

Measurement of ttγ in OS2? channel

CMS Also covered in <u>EFT talk</u> by Jon Wilson (Tuesday)

tt+ γ cross section measurement (CMS)

Measurement of ttγ in OS2ℓ channel

Leptons	Photons	Jets	b jets	Events	_	
$p_{\rm T} > 25 (15) {\rm GeV}$	$p_{\rm T} > 20 { m GeV}$	$p_{\rm T} > 30 {\rm GeV}$	$p_{\rm T} > 30 {\rm GeV}$	$N_\ell = 2 (\mathrm{OC})$	nta	
$ \eta < 2.4$	$ \eta < 1.44$	$ \eta < 2.4$	$ \eta < 2.4$	$N_{\gamma}=1$	me	
	$\Delta R(\gamma, \ell) > 0.4$	$\Delta R(\text{jet}, \ell) > 0.4$	$\Delta R(\text{jet}, \ell) > 0.4$	$N_{ m b} \geq 1$	beri	
	isolated	$\Delta R(\text{jet}, \gamma) > 0.1$	$\Delta R(\text{jet}, \gamma) > 0.1$	$m(\ell\ell) > 20 \mathrm{GeV}$	Exp	
			matched to b hadron			
Symbol	Definition					
$\frac{n_{\rm T}(\gamma)}{n_{\rm T}(\gamma)}$	Transverse mo	mentum of the ph	oton		-	
$p_1(\gamma)$	Absolute value	of the pseudorar	idity of the photon			
$\frac{ \eta (1)}{ \eta (1)}$	Angular conard	tion between the	naity of the photon	et lanton		
$\min \Delta K(\gamma, \ell)$	Angular separa	Angular separation between the photon and the closest lepton				
$\Delta R(\gamma, \ell_1)$	Angular separa	Angular separation between the photon and the leading lepton				
$\Delta R(\gamma, \ell_2)$	Angular separa	Angular separation between the photon and the subleading lepton				
$\min \Delta R(\gamma, b)$	Angular separation between the photon and the closest b jet					
$ \Delta\eta(\ell\ell) $	Pseudorapidity difference between the two leptons					
$\Delta arphi(\ell \ell)$	Azimuthal ang	le difference betw	reen the two leptons			
$p_{\mathrm{T}}(\ell\ell)$	Transverse mo	mentum of the dil	epton system		pu	
$p_{\mathrm{T}}(\ell_1) + p_{\mathrm{T}}(\ell_2)$	Scalar sum of t	he transverse moi	nenta of the two lepto	ons	rou	
$\min \Delta R(\ell, \mathbf{j})$	Smallest angul	ar separation betv	veen any of the select	ed leptons and jets	ckg	
$p_{\mathrm{T}}(\mathbf{j}_1)$	Transverse mo	mentum of the lea	iding jet		Bac	

\bigcup	CMS	ttγ	21:	JHEP	05	(2022)	091	
---	-----	-----	-----	------	----	--------	-----	--

	Course	Correlation	Uncertainty [%]		
	Source	Correlation	Prefit range	Postfit	
	Integrated luminosity	\sim	1.3–3.2	1.7	
	Pileup	\checkmark	0.1 - 1.4	0.7	
_	Trigger efficiency	×	0.6 - 1.7	0.6	
	Electron selection efficiency	\sim	1.0 - 1.3	1.0	
	Muon selection efficiency	\sim	0.3–0.5	0.5	
	Photon selection efficiency	\sim	0.4–3.6	1.1	
	Electron & photon energy	\checkmark	0.0 - 1.1	0.1	
	Jet energy scale	\sim	0.1–1.3	0.5	
	Jet energy resolution	\checkmark	0.0–0.6	< 0.1	
	b tagging efficiency	\sim	0.9 - 1.4	1.1	
	L1 prefiring	\checkmark	0.0–0.8	0.3	
	Values of $\mu_{\rm F}$ and $\mu_{ m R}$	\checkmark	0.3–3.5	1.3	
CdI	PDF choice	\checkmark	0.3–4.5	0.3	
E	PS modelling: ISR & FSR scale	\checkmark	0.3–3.5	1.3	
- Dal	PS modelling: colour reconnection	\checkmark	0.0 - 8.4	0.2	
T	PS modelling: b fragmentation	\checkmark	0.0–2.2	0.7	
	Underlying-event tune	\checkmark	0.5	0.5	
5	$Z\gamma$ correction & normalization	\checkmark	0.0-0.2	0.1	
	t γ normalization	\checkmark	0.0–0.9	0.8	
, ,	Other+ γ normalization	\checkmark	0.3–1.0	0.8	
מרנ	Nonprompt γ normalization	\checkmark	0.0 - 1.8	0.7	
-	Size of simulated samples	×	1.5–7.6	0.9	
	Total systematic uncertainty			3.6	
	Statistical uncertainty			1.4	
	Total uncertainty			3.9	

138fb⁻¹

27

Charge asymmetry in tt+ γ (ATLAS)

Probe charge asymmetry of top quarks and antiquarks

	8	S
	$O_{\rm NN} < 0.6$	$O_{ m NN} \ge 0.6$
$t\bar{t}\gamma \text{ prod (signal)}$	6660 ± 350	6910 ± 340
$t ar{t} \gamma { m decay}$	14100 ± 3100	1900 ± 560
h-fake γ	3400 ± 1400	790 ± 360
e-fake γ	6420 ± 860	1480 ± 260
$\text{prompt } \gamma$	6400 ± 2000	1300 ± 400
lepton fake	410 ± 110	57 ± 35
Total	37400 ± 4500	12400 ± 1100
Data	38527	13763

Total uncertainty	0.030
Statistical uncertainty	0.024
MC statistical uncertainties	1
$t\bar{t}\gamma$ production	0.004
Background processes	0.008
Modelling uncertainties	
$t\bar{t}\gamma$ production modelling	0.003
Background modelling	0.002
Prompt background normalisation	0.003
Experimental uncertainties	
Jet and b -tagging	0.010
Fake lepton background estimate	0.005
$E_{ m T}^{ m miss}$	0.009
Fake photon background estimates	0.004
Photon	0.003
Other experimental	0.004

tt+Z cross section measurement (ATLAS)

Measurement of **ttZ in multilepton channels**

ATLAS ttZ 3ł/4ł: EPCJ 81 (2021) 737

□ Measurement of **ttZ in multilepton channels**

Variable	3 <i>ℓ</i> -Z-1 <i>b</i> 4 <i>j</i> -PCBT	<i>3ℓ-Z-2b3j-</i> PCBT	3ℓ-2	Z-2 <i>b</i> 3 <i>j</i>
	inclusive	inclusive	diffe	erential
$N_\ell (\ell = e, \mu)$		= 3		
	≥1 OSSF	lepton pair with $ m_{\ell\ell}^Z - n$	$ n_Z < 10 \text{GeV}$	
	for all O	SSF combinations: moss	$_{\rm F} > 10 {\rm GeV}$	
$p_{\mathrm{T}}\left(\ell_{1},\ell_{2},\ell_{3}\right)$		> 27, 20, 20 GeV		
N _{jets}	≥ 4	≥ 3	;	≥ 3
N _{b-jets}	$= 1@60\% \ge 2@70\% \ge 2@85\%$			@85%
	veto add. b-jets@70%			
Variable	4ℓ-SF-1 <i>b</i>	4ℓ-SF-2 <i>b</i>	4ℓ-DF-1 <i>b</i>	4ℓ -DF-2 b
$N_\ell(\ell=e,\mu)$		= 4		
	≥1 0	SSF lepton pair with $ m_{\ell\ell}^Z - m_Z $	< 10 GeV	
	for a	all OSSF combinations: m _{OSSF} 2	> 10 GeV	
$p_{\mathrm{T}}(\ell_1, \ell_2, \ell_3, \ell_4)$		> 27, 20, 10, 7 GeV		
$\ell\ell^{\operatorname{non-}Z}$	e^+e^- or $\mu^+\mu^-$	e^+e^- or $\mu^+\mu^-$	$e^{\pm} \mu^{\mp}$	$e^{\pm} \mu^{\mp}$
$E_{\mathrm{T}}^{\mathrm{miss}}$	> 100 GeV, if $ m_{\ell\ell}^{\text{non-}Z} - m_Z \le 10 \text{ GeV} $	> 50 GeV, if $ m_{\ell\ell}^{\text{non-}Z} - m_Z \le 10 \text{ GeV}$	-	-
$E_{\mathrm{T}}^{\mathrm{mss}}$	$ \begin{array}{l} > 100 \mathrm{GeV}, \\ \mathrm{if} \; m_{\ell\ell}^{\mathrm{non-}Z} - m_Z \leq 10 \mathrm{GeV} \\ > 50 \mathrm{GeV}, \\ \mathrm{if} \; m_{\ell\ell}^{\mathrm{non-}Z} - m_Z > 10 \mathrm{GeV} \end{array} $	> 50 GeV, if $ m_{\ell\ell}^{\text{non-Z}} - m_Z \le 10$ GeV -	-	-
$E_{\rm T}^{\rm miss}$ $N_{\rm jets}$	> 100 GeV, if $ m_{\ell\ell}^{\text{non-}Z} - m_Z \le 10 \text{ GeV} $ > 50 GeV, if $ m_{\ell\ell}^{\text{non-}Z} - m_Z > 10 \text{ GeV} $ $\ge 2 $	> 50 GeV, if $ m_{\ell\ell}^{\text{non-}Z} - m_Z \le 10 \text{ GeV}$ - ≥ 2	_ ≥ 2	_ ≥ 2

Uncertainty	$\Delta \sigma_{t\bar{t}Z} / \sigma_{t\bar{t}Z}$ [%]
$t\bar{t}Z$ parton shower	3.1
tWZ modelling	2.9
<i>b</i> -tagging	2.9
WZ/ZZ + jets modelling	2.8
tZq modelling	2.6
Lepton	2.3
Luminosity	2.2
Jets + $E_{\rm T}^{\rm miss}$	2.1
Fake leptons	2.1
$t\bar{t}Z$ ISR	1.6
$t\bar{t}Z \ \mu_{\rm f}$ and $\mu_{\rm r}$ scales	0.9
Other backgrounds	0.7
Pile-up	0.7
$t\bar{t}Z$ PDF	0.2
Total systematic	8.4
Data statistics	5.2
Total	10

ATLAS ttZ 3ł/4ł: EPCJ 81 (2021) 737

□ Measurement of **ttZ in multilepton channels**

Region	3ℓ -Z-1b4j	3ℓ -Z-2b3j	4ℓ-SF-1 <i>b</i>	4ℓ-SF-2 <i>b</i>	4ℓ-DF-1 <i>b</i>	4ℓ-DF-2 <i>b</i>	3ℓ-WZ-CR	4ℓ-ZZ-CR
	-PCBT	-PCBT						
tīZ	185 ± 16	247 ± 20	14.5 ± 1.7	26.9 ± 2.5	19.3 ± 1.8	26.7 ± 2.3	45 ± 11	0.8 ± 0.1
WZ + l	2.4 ± 1.8	0.2 ± 0.3	_	—	_	-	1068 ± 110	_
WZ + b	20 ± 11	10.8 ± 6.1	-	-	-	-	11.2 ± 6.3	-
WZ + c	10.8 ± 4.8	1.8 ± 0.8	-	-	-	—	207 ± 87	-
ZZ + l	0.3 ± 0.2	0.02 ± 0.02	1.7 ± 0.7	0.9 ± 0.5	0.5 ± 0.1	0.02 ± 0.01	121 ± 15	496 ± 26
ZZ + b	3.0 ± 1.6	2.0 ± 1.0	0.9 ± 0.6	2.5 ± 1.5	0.2 ± 0.1	0.07 ± 0.07	1.8 ± 0.9	12.9 ± 7.1
ZZ + c	0.7 ± 0.2	0.1 ± 0.1	0.9 ± 0.5	1.1 ± 0.6	0.2 ± 0.1	0.02 ± 0.01	13.0 ± 4.1	19.8 ± 7.1
tWZ	23.8 ± 4.0	20.5 ± 7.0	2.7 ± 0.4	2.2 ± 0.8	3.8 ± 1.1	2.3 ± 0.9	13.2 ± 1.2	0.2 ± 0.1
tZq	10.8 ± 4.5	29.7 ± 9.0	_	_	_	-	8.6 ± 3.2	-
$t\bar{t}$ +W/H	5.8 ± 0.9	10.1 ± 2.2	0.5 ± 0.1	0.9 ± 0.1	0.6 ± 0.1	0.8 ± 0.1	1.8 ± 0.4	0.01 ± 0.01
Fake leptons	23 ± 11	11.0 ± 5.3	0.7 ± 0.3	0.9 ± 0.4	0.9 ± 0.5	0.3 ± 0.1	65 ± 31	7.9 ± 3.1
Other	0.7 ± 0.4	1.5 ± 0.7	0.7 ± 0.3	0.2 ± 0.1	0.7 ± 0.4	0.2 ± 0.1	12.4 ± 6.3	1.0 ± 0.5
SM total	286 ± 13	334 ± 15	22.5 ± 1.8	35.6 ± 2.7	26.1 ± 1.9	30.3 ± 2.2	1569 ± 43	539 ± 23
Data	272	343	19	33	33	32	1569	539

ATLAS ttZ 3ł/4ł: EPCJ 81 (2021) 737

Measurement of ttZ in multilepton channels

	Variable	Definition
+ 4ℓ	p_{T}^{Z}	Transverse momentum of the Z boson
36	$ y^{Z} $	Absolute value of the rapidity of the Z boson
	N _{jets}	Number of selected jets with $p_{\rm T} > 25$ GeV and $ \eta < 2.5$
3ℓ	$p_{\mathrm{T}}^{\ell,\mathrm{non-}Z}$	Transverse momentum of the lepton which is not associated with the Z boson
<u>.</u>	$ \Delta \phi(Z, t_{\text{lep}}) $	Azimuthal separation between the Z boson and the top quark (antiquark) featuring the $W \rightarrow \ell \nu$ decay
	$ \Delta y(Z, t_{\text{lep}}) $	Absolute rapidity difference between the Z boson and the top quark (antiquark) featuring the $W \rightarrow \ell \nu$ decay
	N _{jets}	Number of selected jets with $p_{\rm T} > 25$ GeV and $ \eta < 2.5$
H	$ \Delta \phi(\ell_t^+,\ell_{\bar{t}}^-) $	Azimuthal separation between the two leptons from the $t\bar{t}$ system
ব	$ \Delta \phi(t\bar{t},Z) $	Azimuthal separation between the Z boson and the $t\bar{t}$ system
	$p_{\mathrm{T}}^{tar{t}}$	Transverse momentum of the $t\bar{t}$ system

Boosted tt+Z/H cross section measurement (CMS)

				TName
Measurement o	of ttZ	and ttH	in boosted regime	b p _T b score
Missing transverse momentum	p!	iiss > 20 GeV		q score
0	p	(e) > 30 (35 G)	eV) in 2016 (2017 and 2018)	$\Delta R(b,q)$ $\Delta R(q,q)$
-1 electron or muon	p	$(\mu) > 30 \text{GeV}$		m(a + c)
-1 electron of muon	η	$ < 2.5, \eta $	u < 2.4	m(q + q
	In	$_{\rm ini}({ m e})/p_{ m T}({ m e}) <$	$(0.2, I_{\min}(\mu) / p_{\rm T}(\mu) < 0.1)$	$\Delta R(\mathbf{b},\mathbf{q})$
>1 AK8 iet	p_{τ}	$> 200 { m GeV}$, $ \eta$	< 2.4	m(b+q)
	50	$< m_{\rm SD} < 200$	GeV	$\Delta R(Z/H$
=1 Z or Higgs boson candidate AK	(8 jet H	ghest bb tagge	er score (>0.8)	
\geq 5 AK4 jets (may overlap AK8 jets	p) p	$>$ 30 GeV, $ \eta $	< 2.4	$\Delta R(Z/H$
\geq 2 b-tagged AK4 jets	Sa	tisty medium	DEEPCSV b tag requirements	
_ 00 ,	Δ	(b-tagged Ak	A jet, Z or Higgs boson candidate) > 0.8	$m_{\rm T}(b + m_{\rm T}/\mu)$
Source of uncortainty	Δ11-	Δ1/-		$m(\mathbf{z}/\mathbf{n})$ $m(\mathbf{b} + \mathbf{b})$
	$\Delta \mu_{\rm tt} Z$	$\Delta \mu_{\rm ttH}$		$\Delta R(b, b)$ $\Delta R(Z/H)$
$t\bar{t} + c\bar{c}$ cross section	+0.27 -0.23	$^{+0.14}_{-0.13}$		$\Delta R(Z/I)$
$(\overline{L} + 1\overline{L})$	+0.18	+0.16		m(Z/H)
tt + bb cross section	-0.24	-0.22		$\Delta R(\mathbf{b}, \ell)$ $m(\mathbf{b} + \ell)$
$t\bar{t} + 2b$ cross section	+0.03	± 0.09		N(b _{out})
	-0.03	1011		N(q _{out}) Event to
$\mu_{ m R}$ and $\mu_{ m F}$ scales	$^{+0.12}_{-0.14}$	-0.15		N(AK8
Parton shower	+0.16	+0.07		N(AK4 N(Z/H
i ditori bilo v ci	-0.17	-0.06		AK8 m_S $H_T(h_{res})$
b tagging efficiency	$^{+0.25}_{-0.13}$	± 0.10		$H_{\rm T}({\rm b}_{\rm out}$
bb tagging officiency	+0.18	+0.07		spherici
bb tagging enterency	-0.13	-0.04		aplanar
Jet energy scale and resolution	± 0.11	$^{+0.11}_{-0.12}$		b _{in} score
Iet mass scale and resolution	+0.10	+0.08		$\Delta R(\mathbf{b}_{in},$
Jet mass scale and resolution	-0.10	10.00		

CMS

Also covered in EFT talk by Jon Wilson (Tuesday)

CMS boosted ttZ/H: <u>CMS-TOP-21-003</u> (submitted to PRD)

Name	Description
tī system	
b p _T	$v_{\rm T}$ of the leading (subleading) b jet
b score	DEEPCSV score of the leading (subleading) b jet
a p _T	$p_{\rm T}$ of the leading (subleading) non-b iet
d score	DEEPCSV score of the leading (subleading) non-b iet
$\Delta R(\mathbf{b},\mathbf{q})$	minimum ΛR between the leading (subleading) b iet and any non-b iet
$\Delta R(q,q)$	AR between the non-b jets closest and next-to-closest to the leading (sub-
51((4)(4)	leading) h jet
m(a+a)	invariant mass of the non-b iets closest and next-to-closest to the leading
(4 + 4)	(subleading) h iet
$\Delta R(\mathbf{b}, \mathbf{a} + \mathbf{a})$	ΔR between the leading (subleading) h jet and the sum of the nearest and
BR(b)(q + q)	next-to-nearest non-biets
$m(\mathbf{b} + \mathbf{a} + \mathbf{a})$	invariant mass of the leading (subleading) b jet and the nearest and next-to-
m(b+q+q)	nearest non-b jets
$\Delta R(Z/H h + a + a)$	ΔR between the Z or Higgs boson candidate and the sum of the leading (sub-
$\operatorname{BR}(Z, \Pi, U + q + q)$	leading) h jet and the non-h jets nearest and next-to-nearest to the leading
	(subleading) b jet and the non b jets nearest and next to nearest to the reading
$\Delta R(Z/H h + h + a + a + \ell)$	ΔR between the Z or Higgs boson candidate and the sum of the leading and
$\operatorname{Lin}(\mathbb{Z}) \operatorname{Lin}(\mathbb{P} + \mathbb{P} + \mathbb{Q} + \mathbb{Q} + \mathbb{Q})$	subleading h jets, the non-h jets nearest and next-to-nearest to the leading
	(subleading) hiet and the lenton
$m_{\rm T}({\rm b}+\ell,\vec{n}_{\rm m}^{\rm miss})$	transverse mass of the subleading b jet and the lepton
m(Z/H+b)	invariant mass of the Z or Higgs boson candidate and the nearest h jet
$m(\mathbf{b} + \mathbf{b})$	invariant mass of the leading and subleading b jets
$\Delta R(\mathbf{b},\mathbf{b})$	ΔR between the leading and subleading b jets
$\Delta R(Z/H,q)$	ΔR between the Z or Higgs boson candidate and the leading non-b jet
$\Delta R(Z/H,b)$	ΔR between the Z or Higgs boson candidate and the leading b jet
$\Delta R(Z/H, \ell)$	ΔR between the Z or Higgs boson candidate and the lepton
$m(Z/H + \ell)$	invariant mass of the Z or Higgs boson candidate and the lepton
$\Delta R(\mathbf{b}, \ell)$	ΔR between the leading (subleading) b iet and the lepton
$m(\mathbf{b}+\ell)$	invariant mass of the leading (subleading) b jet and the lepton
N(bout)	number of b jets outside the Z or Higgs boson candidate cone ($\Delta R > 0.8$)
N(q _{out})	number of non-b jets outside the Z or Higgs boson candidate cone ($\Delta R > 0.8$)
Event topology	
N(AK8 jets)	number of AK8 jets, including the Z or Higgs boson candidate
N(AK4 jets)	number of AK4 jets
N(Z/H)	number of AK8 jets with a minimum AK8 bb tagger score of 0.8
AK8 msp	maximum m_{SD} of AK8 jets, excluding the Z or Higgs boson candidate
$H_{\rm T}({\rm b_{out}})$	$H_{\rm T}$ of the b jets outside the Z or Higgs boson candidate cone ($\Delta R > 0.8$)
$H_{\rm T}({\rm b}_{\rm out},{\rm g}_{\rm out},\ell)$	$H_{\rm T}$ of all AK4 jets outside the Z or Higgs boson candidate cone ($\Delta R > 0.8$)
T(oub Ioub)	and the lepton
sphericity	sphericity calculated from the AK4 jets and the lepton [?]
aplanarity	aplanarity calculated from the AK4 jets and the lepton [?]
Z or Higgs boson candidate	substructure
b _{in} score	maximum (minimum) DEEPCSV score of AK4 jets within the Z or Higgs
	boson candidate cone ($\Delta R < 0.8$)
$\Delta R(\mathbf{b}_{in}, \mathbf{b}_{out})$	ΔR between one b jet within the Z or Higgs boson candidate cone ($\Delta R < 0.8$)
	and the leading b jet outside of the Z or Higgs boson candidate cone
$N(b_{in})$	number of b jets within the Z or Higgs boson candidate cone ($\Delta R < 0.8$)
$N(q_{in})$	number of non-b jets within the Z or Higgs boson candidate cone ($\Delta R < 0.8$)
Z/H bb score	AK8 bb tagger score of the Z or Higgs boson candidate

33

Boosted tt+Z/H cross section measurement (CMS)

138fb⁻¹

Measurement of ttZ and ttH in boosted regime

Also covered in <u>YSF talk</u> by Tu Thong Tran (Tuesday)

tt+W cross section measurement (CMS)

Dedicated <u>Poster</u> by Tu Thong Tran (Monday) 138fb⁻¹

Measurement of ttW in SS2?/3? regions

Also covered in <u>YSF talk</u> by Tu Thong Tran (Tuesday)

tt+W cross section measurement (CMS)

Dedicated <u>Poster</u> by Tu Thong Tran (Monday) 138fb⁻¹

■ Measurement of **ttW in SS2ℓ/3ℓ regions**

tt+W cross section measurement (CMS)

□ Measurement of **ttW in SS2ℓ/3ℓ regions**

Process	$\ell^+\ell^+$	$\ell^- \ell^-$	$\ell^{\pm}\ell^{\mp}\ell^{+}$	$\ell^{\pm}\ell^{\mp}\ell^{-}$
tĪW	677 ± 21	355 ± 12	119.4 ± 9.2	65.3 ± 5.4
Nonprompt	2490 ± 600	2360 ± 570	325 ± 75	298 ± 71
Charge misID	520 ± 110	520 ± 111	—	—
tīH	167 ± 34	169 ± 34	56 ± 12	57 ± 12
${ m t\bar{t}Z}/\gamma^*$	335 ± 26	333 ± 26	145 ± 13	147 ± 13
Diboson	382 ± 88	285 ± 65	46.8 ± 9.1	38.0 ± 7.5
Other	178 ± 34	126 ± 27	43.4 ± 8.2	33.5 ± 7.4
Conversions	177 ± 54	192 ± 59	22.9 ± 7.1	24.0 ± 7.4
Total background	4250 ± 620	4000 ± 590	639 ± 80	600 ± 76
Total prediction	4920 ± 620	4350 ± 590	758 ± 81	663 ± 76
Data	5143	4486	834	744

CMS ttW 2ł/3ł: <u>CMS-TOP-21-011</u> (submitted to JHEP)

	Dedicated Dester	138fb ⁻¹				
)	by Tu Thong Tran (Monday)	\geq				
Source		Uncertainty [%]				
Experimer	tal uncertainties					
Integra	ted luminosity	1.9				
b taggi	ng efficiency	1.6				
Trigger	efficiency	1.2				
Pileup	reweighting	1.0				
L1 inef	ficiency	0.7				
Jet ener	rgy scale	0.6				
Jet ener	rgy resolution	0.4				
Lepton	selection efficiency	0.4				
Backgroun	d uncertainties					
tīH nor	malization	2.6				
Charge	misidentification	1.6				
Nonpro	ompt leptons	1.3				
VVV ne	ormalization	1.2				
tīVV no	ormalization	1.2				
Conversions normalization		0.7				
tī γ normalization		0.6				
ZZ normalization		0.6				
Other normalizations		0.5				
tīZ nor	malization	0.3				
WZ no	rmalization	0.2				
tZq nor	rmalization	0.2				
tHq no	0.2					
Modeling	uncertainties					
tīW sca	le	1.8				
tīW col	or reconnection	1.0				
ISR & I	SR scale for t t W	0.8				
$t\bar{t}\gamma$ scal	e	0.4				
VVV so	ale	0.3				
tīH sca	le	0.2				
Conver	sions	0.2				
Simulation	statistical uncertainty	1.8 37				
Total syste	matic uncertainty	5.8				

XPERIMENT	_	Region	Channel	Nj	N _b	Other requirements	Fitted variable
□ Multi-lepton + SS2ℓ channel		SR	2LSS/3L	≥ 6	≥ 2	$H_{\rm T} > 500$	BDT
		CR Conv.	R Conv. $e^{\pm}e^{\pm} e^{\pm}\mu^{\pm} $		≥ 1	$m_{ee}^{\rm CV} \in [0, 0.1 {\rm GeV}]$	$m_{ee}^{\rm PV}$
						$200 < H_{\rm T} < 500 {\rm ~GeV}$	
		CR HF e	еее ееµ	-	= 1	$100 < H_{\rm T} < 250 { m ~GeV}$	counting
		CR HF μ	еµµ µµµ	-	= 1	$100 < H_{\rm T} < 250 { m ~GeV}$	counting
		CR ttW	$e^{\pm}\mu^{\pm} \mu^{\pm}\mu^{\pm} $	≥ 4	≥ 2	$m_{ee}^{\rm CV} \notin [0, 0.1 \text{ GeV}], \eta(e) < 1.5$	$\Sigma p_{\mathrm{T}}^\ell$
Parameter $NF_{t\bar{t}W}$ $NF_{Mat. Conv.}$ $NF_{Low m_{\gamma^*}}$ $NF_{HF e}$	Parameter $NF_{I\bar{I}W}$ $NF_{Mat. Conv.}$ $NF_{Low m_{\gamma^*}}$ $NF_{HF e}$ $NF_{HF \mu}$					for $N_b = 2$, $H_T < 500$ GeV or $N_j < 6$	
Value 1.6 ± 0.3 1.6 ± 0.5 0.9 ± 0.4 0.8 ± 0.4 1.0 ± 0.4						for $N_b \ge 3$, $H_T < 500$ GeV	
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \\ \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \end{array} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} \\ \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ $	ATLAS Vs = 13 TeV, 139 fb CR HF μ Post-Fit	 Data ∎ttit titW ∎tZ titH Mat. HF μ Other HF μ Other ttt ØUnce 	Veb 1.0 / strend	20 ATLAS (\$s = 13 TeV, 139 fb ⁻¹ CR Conv. Post-Fit 50 40 40 50 50 50 50 50 50 50 50 50 5	Data TitW TitH Mat.Co Low m ₄ Others Wurceta	$\begin{array}{c} 200 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	titi G mis-id μ μ μ μ μ μ μ μ

ATLAS four top SS2{/3{+: EPJC 80 (2020) 1085

□ Multi-lepton + SS2ℓ channel			SR	SR and BDT > 0
Uncertainty source	Δμ	$t\bar{t}W$ +jets	102 ± 26	23 ± 10
Signal modelling	μ	tŦWW	7 ± 4	2 ± 1
<i>tītī</i> cross section	+0.56 -0.31	tī7+iets	48 + 9	9 + 2
$t\bar{t}t\bar{t}$ modelling	+0.15 -0.09	$t\overline{t}U$ jets	$\frac{10}{29} \pm 0$	2 ± 2
Background modelling		<i>iiH</i> +jets	38 ± 9	8 ± 2
$t\bar{t}W$ +jets modelling	+0.26 -0.27	Q mis-id	16 ± 1	2.7 ± 0.2
$t\bar{t}t$ modelling	+0.10 -0.07	Mat. Conv.	19 ± 6	3 ± 1
Non-prompt leptons modelling	+0.05 -0.04	Low m.*	9 + 4	09 + 05
$t\bar{t}H$ +jets modelling	+0.04 -0.01	LEw	2 ± 2	0.5 ± 0.5
<i>ttZ</i> +jets modelling	+0.02 -0.04	пге	5 ± 5	1 ± 1
Other background modelling	+0.03 -0.02	HF μ	12 ± 6	3 ± 2
Charge misassignment	+0.01 -0.02	LF	4 ± 5	1 ± 1
Instrumental	0.10	Other fake	6 ± 2	2 ± 1
Jet uncertainties	+0.12 -0.08		0 ± 2	2 ± 1
Jet flavour tagging (light-flavour jets)	+0.11 -0.06	V V, V V V, V H	3 ± 2	0.2 ± 0.2
Simulation sample size	+0.06 -0.06	tZq, tWZ	5 ± 2	1.0 ± 0.4
	+0.05 -0.03	Other $t\bar{t}X$	3 + 2	1 + 1
Jet flavour tagging (<i>b</i> -jets)	+0.04 -0.02		3 ± 2	1 ± 1
Jet havour tagging (<i>c</i> -jets)	+0.03 -0.01	ttt	3 ± 3	2 ± 2
Other experimental uncertainties	+0.03 -0.01	Total blog	278 - 22	50 ± 10
Total systematic uncertainty	+0.70 -0.44	Total UKg	270 ± 22	J9 ± 10
Statistical	+0.42 -0.39	tītī	60 + 17	44 + 12
Non-prompt leptons normalisation (HF, Mat. Conv., Low m_{γ^*})	+0.05 -0.04		00 ± 17	11 ± 12
ttW normalisation	+0.04 -0.04	Total	337 ± 18	103 ± 10
Total uncertainty	+0.83 -0.60	-	220	105
ATLAC four top CC20/2011 ED IC 00 (202)	1005	Data	330	105

ATLAS four top SS2{/3{+: EPJC 80 (2020) 1085

BSM four top search (ATLAS)

Also covered in BSM

talk by Daniel Scheirich

(Wednesday)

Process	Pre-fit	Post-fit	Region	Channel	$N_{ m j}$	N _b	Other select	tion cuts	Fitted variable
tītī tīW QCD	22.3 ± 5.4 9.4 ± 9.3	25.9 ± 5.4 17.1 ± 6.9	CR Conv	$e^{\pm}e^{\pm}\mid\mid e^{\pm}\mu^{\pm}$	$4 \le N_j < 6$	≥ 1	$m_{ee}^{CV} \in [0, 0.1] \text{ GeV}$ 200 < H_{T} < 500 GeV		$m_{ee}^{\rm PV}$
$t\bar{t}W$ EW	1.3 ± 0.5	1.4 ± 0.6	CR HF e	еее ееµ		= 1	$100 < H_{\rm T} <$	250 GeV	Yield
$t\bar{t}WW$	1.8 ± 1.0	1.9 ± 1.0	CR HF μ	<i>еµµ µµµ</i>		= 1	$100 < H_{\rm T} <$	$100 < H_{\rm T} < 250 {\rm GeV}$	
$t\bar{t}(Z/\gamma^*)$ (high mass)	8.5 ± 2.2	9.2 ± 2.3					$m_{ee}^{\text{CV}} \notin [0, 0.1] \text{ GeV}, \eta(e) < 1.5$		
tīH	7.2 ± 1.7	7.8 ± 1.7	$\operatorname{CR} t\bar{t}W$	$e^{\pm}\mu^{\pm} \mid\mid \mu^{\pm}\mu^{\pm}$	≥ 4	≥ 2	for $N_{\rm b} = 2, H_{\rm T} < 500$	0 GeV or $N_{\rm i} < 6$;	$\sum p_{\mathrm{T}}^{\ell}$
QmisID	2.1 ± 0.1	2.1 ± 0.1					for $N_{\rm b} \ge 3$, $H_{\rm T}$	< 500 GeV	1
Mat. Conv.	1.8 ± 0.6	3.0 ± 1.2	CR lowBDT	SS+3L	≥ 6	≥ 2	$H_{\rm T} > 500 {\rm GeV}, {\rm SI}$	M BDT < 0.55	SM BDT
Low m_{γ^*}	1.2 ± 0.6	0.8 ± 0.8	BSM SR	SS+3I	> 6	> 2	$H_{\rm T} > 500 {\rm GeV} {\rm SI}$	M BDT > 0.55	BSM nBDT
HF e	0.6 ± 0.5	0.6 ± 0.5	DSIVI SIC	55151	<u>≥</u> 0	22	11 > 500 000, 51	M BD1 ≥ 0.55	выйрыви
HF μ	2.7 ± 1.0	2.9 ± 1.2		Τ				120	
LF	1.1 ± 1.2	0.4 ± 1.0	Paramete	$r \mid \lambda_{t\bar{t}WO}$	$_{\rm CD}$ $\lambda_{\rm Ma}$	at. Co	onv. $\lambda_{\text{Low }m_{\gamma^*}}$	$\lambda_{ m HF} e$	$\lambda_{ m HF\mu}$
Other fake	1.1 ± 0.7	1.3 ± 0.7	Value	1210	2 15		5 06 105	0.0 ± 0.4	$\frac{1}{10}$ $\frac{1}{02}$
tZ, tWZ	0.9 ± 0.3	0.9 ± 0.3	value	1.5 ± 0	1.5 1.5	τU	$.5 0.0 \pm 0.3$	0.9 ± 0.4	1.0 ± 0.2
VV, VH, VVV	0.3 ± 0.1	0.3 ± 0.1							
tīt	1.9 ± 1.9	2.3 ± 2.1							
$t\bar{t}WZ, t\bar{t}ZZ, t\bar{t}WH, t\bar{t}HH$	1.3 ± 0.3	1.4 ± 0.3							
Total background	65.6 ± 13.2	79.5 ± 6.8							
$t\bar{t}H(\rightarrow t\bar{t}), m_H = 400 \text{ GeV}$	38.6 ± 2.4	-							
$t\bar{t}H(\rightarrow t\bar{t}), m_H = 1000 \text{ GeV}$	4.4 ± 0.2	-							
Data	9	1							

BSM four top search (ATLAS)

 $\Box \quad \text{Search for ttH/A} \to \text{tttt}$

ATLAS ttH/A \rightarrow tttt: <u>ATLAS-CONF-2022-008</u>

□ 1ℓ + OS2ℓ channel

Uncertainty source	Description	Components (number)		
$t\bar{t}+\geq 1b$ normalisation $t\bar{t}+\geq 1c$ normalisation	±50% ±50%	$t\bar{t}+b, t\bar{t}+b\bar{b}, t\bar{t}+B, t\bar{t}+\geq 3b$ (4) $t\bar{t}+\geq 1c$ (1)		
Generator choice	Powheg vs MadGraph5_aMC@NLO	$(t\bar{t}+\text{light}, t\bar{t}+\geq 1c, t\bar{t}+b, t\bar{t}+b\bar{b}, t\bar{t}+B, t\bar{t}+\geq 3b)$		
PS choice	Pythia 8 vs Herwig 7	$\otimes \text{ (shape, migration) (12)} \\ (t\bar{t} + \text{light, } t\bar{t} + \ge 1c, t\bar{t} + b, t\bar{t} + b\bar{b}, t\bar{t} + B, t\bar{t} + \ge 3b) \\ \otimes \text{ (shape, migration) (12)} \end{aligned}$		
Renormalisation scale	Varying μ_r in Powneg	$t\bar{t}$ +light, $t\bar{t}$ + $\geq 1c$, $t\bar{t}$ + $\geq 1b$ (3)		
Factorisation scale	Varying μ_{f} in Powheg	$t\bar{t}$ +light, $t\bar{t}$ + $\geq 1c$, $t\bar{t}$ + $\geq 1b$ (3)		
ISR	Varying $\alpha_{\rm S}^{\rm ISR}({\rm PS})$ in Pythia 8	$t\bar{t}$ +light, $t\bar{t}$ + $\geq 1c$, $t\bar{t}$ + $\geq 1b$ (3)		
FSR	Varying $\mu_{\rm f}$ (PS) in Pythia 8	$t\bar{t}$ +light, $t\bar{t}$ + $\geq 1c$, $t\bar{t}$ + $\geq 1b$ (3)		
5FS vs 4FS	PowhegBoxRes (4FS) vs PowhegBox (5FS)	$t\bar{t}+b, t\bar{t}+b\bar{b}, t\bar{t}+B, t\bar{t}+\geq 3b$ (4)		

139fb⁻¹

Status of four top searches (ATLAS)

ATLAS

Name

2b

3bL

3bH

3bV

4b (1L)

≥5b (1L)

 \geq 4b (2LOS)

 $N_{b}^{60\%}$

 ≤ 2

= 3

= 3

ATLAS four top 1*l*/OS2*l*+: JHEP 11 (2021) 118

□ 1ℓ + OS2ℓ channel

ATLAS four top 1l/OS2l+: JHEP 11 (2021) 118

Uncertainty source	$\Delta \sigma_{t\bar{t}t\bar{t}}$ [fb]		
Signal Modelling			
$t\bar{t}t\bar{t}$ modelling	+8	-3	
Background Modelling			
$t\bar{t} + \geq 1b$ modelling	+8	-7	
$t\bar{t} + \geq 1c$ modelling	+5	-4	
$t\bar{t}$ +jets reweighting	+4	-3	
Other background modelling	+4	-3	
$t\bar{t}$ +light modelling	+2	-2	
Experimental			
Jet energy scale and resolution	+6	-4	
<i>b</i> -tagging efficiency and mis-tag rates	+4	-3	
MC statistical uncertainties	+2	-2	
Luminosity	< 1		
Other uncertainties	< 1		
Total systematic uncertainty	+15	-12	
Statistical uncertainty	+8	-8	
Total uncertainty	+17	-15	

Status of four top searches (CMS)

OS2? channel

- only analyze 2017 and 2018
- 2016 measurement in <u>JHEP 11 (2019) 082</u>
- **\Box** Fit H_T(jets) distributions in lepton / jet / b-jet categories
 - Low jet/b-jet categories function as CRs
- Backgrounds mostly ttbb/ttjj/ttX
 - estimated from simulation
- Measured signal-strength: $\mu(tttt) = 1.6^{+1.4}/_{-1.3} (1.3\sigma)$

❑ 1ℓ channel

- BDT for signal / background separation
 - Resolved top tagger as input
 - Fit BDT distributions
 - Lepton / jet / b-jet / top candidate regions
- Background dominated by ttbb
 - estimated from simulation
- Measured signal-strength:
 μ(tttt) = 1.2 ± 0.9 (1.4σ)

Status of four top searches (CMS)

138 fb⁻¹ (13 TeV)

All-hadronic channel

- First time the all-hadronic channel is used in four top searches!
- □ Fit output of BDT for signal / multijet separation
 - Categories of resolved / boosted top candidates
 - > Further divided into H_{T} (jets) bins
- Backgrounds:
 - > Multijet / tt+jets \rightarrow data-driven estimation
 - Minor contributions estimated from simulation
- □ Measured signal-strength: µ(tttt) = 5.8 ^{+2.5}/_{-2.4} (2.5σ) > High fluctuation relative to expected 0.4σ

CMS

- **Combined measurement of** $tt_{\gamma}+tW_{\gamma}$ in OS $e+\mu$ channel
 - > Resonant tt_{γ} and non-resonant tW_{γ} from pp \rightarrow bWbW_{γ} process
- □ Fiducial region at parton level:
 - > eµ from W decays, two b-jets from top decay, one γ
- \Box Fit S_T distribution for inclusive cross-section
- \Box Backgrounds mostly τ -decays and non-prompt γ
 - Estimated from simulation
- Observed: $\sigma(tt\gamma) = 39.6 \pm 0.8(stat)^{+2.8}/_{-2.2}(syst)$ fb
 - Precision of 6%
 - Dominated by S&B modeling + photon identification
- Agrees well with calculations <u>(JHEP 10 (2018) 158</u>, <u>JHEP 01 (2019) 188)</u> $\sigma(tt\gamma) = 38.5 + 0.56 / (scale) + 1.04 / (pdf) fb$
- ATLAS tt_γ+tW_γ eμ: <u>JHEP 09 (2020) 049</u>

139fb⁻¹

- Differential measurement via unfolding to parton level with RooUnfold
- NLO calculation describes observables related to leptons better (sensitive to tt spin correlations)

Theory NLO: JHEP 10 (2018) 158, JHEP 01 (2019) 188

ATLAS tt_γ+tW_γ eμ: <u>JHEP 09 (2020) 049</u>

77.5fb⁻¹

- □ Measurement of **ttZ in multilepton channels**
- □ Fit in lepton / jet / b-jet bins
- Backgrounds:
 - > Non-prompt \rightarrow data-driven off-Z peak
 - > WZ/ZZ → CRs on Z peaks in 3/4?
 - > Remaining (e.g. t(t)+X) estimated from MC
- Observed: σ(ttZ) = 0.95 ± 0.05(stat) ± 0.06(syst) pb
 - Precision of 8%
 - Dominated by lep. ID, PS modeling and background yields
- Agreement with NLO+NNLL calculation (<u>EPJC 79 (2019) 249</u>) $\sigma(\text{ttZ}) = 0.86 + 0.07 /_{-0.08} (\text{scale}) \pm 0.03 (\text{pdf+a}_{\text{s}}) \text{ pb}$ Lepton requirement Measured cross section 3ℓ $0.97 \pm 0.06 (\text{stat}) \pm 0.06 (\text{syst}) \text{ pb}$

 4ℓ

Total

CMS ttZ 3ł/4ł: JHEP 03 (2020) 056

 0.91 ± 0.14 (stat) ± 0.08 (syst) pb

- Differential measurement via unfolding to parton level with TUnfold
 - Only uses the 3 lepton channel
 - OSSF lepton pair for Z reconstruction
- □ Probe p_T of Z boson and angle between Z and $ℓ^-$ in Z rest frame
 - ➢ Good agreement for simulation (amC@NLO) and NLO+NNLL calculation (EPJC 79 (2019) 249)

CMS ttZ 3ł/4ł: JHEP 03 (2020) 056

Also covered in EFT talk by Jon (Tuesday)

Boosted tt+Z/H cross section measurement (CMS)

- **D** Setting differential limits on p_{T} of Z and H boson
 - > Higher sensitivity on H than Z due to large $H \rightarrow bb$ branching fraction

CMS boosted ttZ/H: <u>CMS-TOP-21-003</u> (submitted to PRD)

- Measurement of ttW and ttZ in multilepton channels
 - ttZ measurement superseded by <u>EPCJ 81 (2021) 737</u>
- □ SS2ℓ and 3ℓ regions targeting ttW:
 - SS2l split per charge and lepton flavors, b-jets
 - > 3ℓ split in on- and off-Z peak for ttW and ttZ and jet and b-jet regions
- Backgrounds:
 - \succ WW/WZ/ZZ \rightarrow CRs
 - > Non-prompt leptons \rightarrow data-driven
 - Others estimated from simulation
- □ Observed ttW cross section in 2D fit of ttW and ttZ: σ (ttW) = 0.87 ± 0.13(stat) ± 0.14(syst) pb
 - Precision of 22%
 - Limited by signal modeling and data statistics
- ATLAS ttW/ttZ 2{/3{/4{: PRD 99 (2019) 072009

- □ Multi-lepton + SS2ℓ channel
- Two analysis strategies
 - Cut-based: Separate lepton / jet / b-jet bins
 - BDT-based: BDT for signal identification in full region
- Backgrounds:
 - > $ttW/ttZ \rightarrow CRs$ with less jets / on Z peak
 - > Non-prompt \rightarrow data-driven estimation
- □ Measured signal-strength for BDT analysis: $\mu(tttt) = 1.1^{+0.5}/_{-0.4} (2.5\sigma)$
 - > Higher sensitivity than cut-based analysis (1.7σ)
 - Statistically limited

