Permutationless Event Reconstruction with Symmetry Preserving Attention Networks Based on • arXiv:2010.09206 • arXiv:2106.03898 , and work in progress Public codebase: • GitHub

Michael Fenton, Alexander Shmakov, David Ho, Hideki Okawa, Yuji Lee, Ko-Yang Hsiao, Shih-Chieh Hsu, Daniel Whiteson, Pierre Baldi

> University of California, Irvine m.fenton@cern.ch

> Top2022, Durham UK September 6, 2022

Top Reconstruction & Attention

- A key stage in most top analyses is the reconstruction of the top quarks from its decay products: "jet-parton assignment"
- Typically, test every possible permutation of jets, and take the "best" one

- Most state of the art NLP methods now use attention mechanisms
 Vaswani et al., superceding eg RNNs and LSTMs
 - Permutation invariant
 - Handles variable-length lists
- *Tensor Attention*: generalisation of attention to encode symmetries in particle resonstruction
 - ullet eg $q \leftrightarrow ar{q}$ in W decays or $t \leftrightarrow ar{t}$ for $tar{t}$ events
- \bullet Allows to test every possible permutation in a single NN pass \to no more time-consuming O(10-1000) per-event permutation calculations

ロトス回トスヨトスヨ

Symmetry Preserving Attention Networks: SPA-NET

• Output: Softmax per final state particle

• Input: **unordered** list of jets (4vec+btag)

- ΔR matching between jets and partons for truth definition
- Loss function defined only for particles fully truth matched and masked if not; allows training on "partial events"
 - Reduces the number of generated events required for training
 - Improves performance on events in which one or more particles fall out of fiducial volume

イロト イポト イヨト イヨト

- Can include ALL jets in every event with no CPU penalty
- Trivially can include other jet variables in training eg q/g tagger, JSS, charm tagging...

All-Hadronic Results

● *tt*:

- SPA-NET: 63.3% full event reconstruction (80.3-52.1% in NJets)
- χ^2 : 42.6% (66.4-28.1 in NJets)

- $t\bar{t}H, H \rightarrow b\bar{b}$:
 - Spa-Net: 38.3% (53.2-30.6%)
 - χ²: 1.6% (4.0-0.4%)
- 4-top:
 - Spa-Net: 19.1% (35.0-14.9%)

イロト イポト イヨト イヨト

• χ^2 : Intractable!

 \bullet No permutations \rightarrow orders of magnitude speedup, & flat vs NJets!

Michael Fenton (UCI)

WIP: Lepton+Jets Final States

- One-hot-encode different objects (jets, leptons, etc)
- Add event level variables (MET etc)

tt:

- SPA-NET: 75.6% full event reconstruction (85.5-59.8% vs NJets)
- KLFitter: 52.1% (77.2-23.7%)
- Permutation DNN: 64.9% (80.3-48.8%) → Erdmann et al
- $t\bar{t}H, H \rightarrow b\bar{b}$
 - $\bullet~{\rm SPA-NET:}~54.2\%$ in 6j, 42.6% in 7j
 - KLFitter: 31.4% in 6j, 17.7% in 7j

- AUC of 85% for "presence" output; ie, does the network think this particle has a true reconstruction in this event? \to can be used to cut events that are not reconstructable
- No reco efficiency dependence found on top mass, parton shower, BSM (Z')

New Features: Regression of Kinematics (WIP)

• Train SPANET to reconstruct $t\bar{t}$ and simultaneously train an output head to predict neutrino η

New Features: Direct Signal vs Background Discrimination (WIP)

• Train SPANET to reconstruct $t\bar{t}H, H \rightarrow b\bar{b}$, and simultaneously train an output head to separate $t\bar{t}H$ and $t\bar{t} + b\bar{b}$

- equivalent performance to training BDT on HL variables calculated using reconstructed system
- Both outperform BDT trained on same variables using KLFitter reconstruction

The code for these features is not public yet, but can be provided upon request =

Michael Fenton (UCI)

The SPA-NET Package : • GITHUB

- We have released a user friendly package to implement SPA-NET for arbitrary final states (NOT limited to top!)
- Simple config file:

```
[SOURCE]
mass = log normalize
                          Input features, normalisations
pt = log_normalize
eta = normalize
phi = normalize
btag = none
[EVENT]
                             Target topology
particles = (t1, t2)
permutations = [(t1, t2)]
                          Symmetry between particles
jets = (q1, q2, b)
permutations = [(q1, q2)]
                            Particle decays and symmetries
jets = (q1, q2, b)
permutations = [(q1, q2)]
```

- Easy to add new input variables, change symmetry assumptions, etc
- Just need to convert data into right format and then run train.py

Michael Fenton (UCI)

Summary

- If you reconstruct multi-object final states in your analysis, you should use SPA-NET
- Full event reconstruction is possible in arbitrarily complex final states - even all-hadronic 4-top!
- No strong dependence on training data used \rightarrow do not expect uncertainties to be enhanced by using in measurements
- New features in development to improve reconstruction of missing components, signal vs background discrimination, cutting out unreconstructable events...
- Full details in arXiv:2010.09206 arXiv:2106.03898 (and more to follow)
- Code at GitHub
- Please come find me at the breaks if you'd like to discuss 🙂

Backup

Michael Fenton (UCI)

Permutationless Event Reconstruction with Symmetry

2 September 6, 2022 10/9

590

(日)

AllHad ttbar

		Event	SPA-NET Efficiency		χ^2 Efficiency	
	$N_{ m jets}$	Fraction	Event	Top Quark	Event	Top Quark
All Events	== 6	0.245	0.643	0.696	0.461	0.523
	== 7	0.282	32 0.601 0.667		0.408	0.476
	\geq 8	0.320	0.528	0.613	0.313	0.395
	Inclusive	0.848	0.586	0.653	0.387	0.457
Complete Events	== 6	0.074	0.803	0.837	0.664	0.696
	== 7	0.105	0.667	0.754	0.457	0.556
	\geq 8	0.145	0.521	0.662	0.281	0.429
	Inclusive	0.325	0.633	0.732	0.426	0.532

DQC

イロト イヨト イヨト イヨト

		Event	SPA-NET Efficiency			χ^2 Efficiency		
	$N_{ m jets}$	Fraction	Event	Higgs	Тор	Event	Higgs	Тор
All Events	== 8	0.261	0.370	0.497	0.540	0.056	0.193	0.092
	== 9	0.313	0.343	0.492	0.514	0.053	0.160	0.102
	\geq 10	0.313	0.294	0.472	0.473	0.031	0.150	0.056
	Inclusive	0.972	0.330	0.485	0.502	0.045	0.164	0.081
Complete Events	== 8	0.042	0.532	0.657	0.663	0.040	0.220	0.135
	== 9	0.070	0.422	0.601	0.596	0.019	0.152	0.079
	\geq 10	0.115	0.306	0.545	0.523	0.004	0.126	0.073
	Inclusive	0.228	0.383	0.583	0.572	0.016	0.153	0.087

DQC

イロト イロト イヨト イヨト

		Event	SPA-NET Efficience	
	$N_{ m jets}$	Fraction	Event	Top Quark
All Events	== 12	0.219	0.276	0.484
	== 13	0.304	0.247	0.474
	≥ 14	0.450	0.198	0.450
	Inclusive	0.974	0.231	0.464
Complete Events	== 12	0.005	0.350	0.617
	== 13	0.016	0.249	0.567
	≥ 14	0.044	0.149	0.504
	Inclusive	0.066	0.191	0.529

DQC

イロト イロト イヨト イヨト

Int Solution	Full Event Efficiency						
Jet Selection	All	W_{had}	t_{had}	t_{lep}			
= 4 Jets	84.64	90.64	86.15	90.05			
= 5 Jets	72.61	80.16	82.39	87.01			
= 6 Jets	62.91	71.59	79.03	84.16			
= 7 Jets	55.87	65.66	75.53	82.06			
= 8 Jets	50.10	60.25	73.63	79.44			
= 9 Jets	46.39	55.65	70.41	79.20			
= 10 Jets	42.72	54.64	67.88	75.50			

-

590

< ロ ト < 回 ト < 三 ト < 三 ト</p>

Ist Solastion	Reconstruction Efficiency (Full Events)						
Jet Selection	All	W_{had}	b_{had}	b_{lep}	Higgs		
= 6 Jets	54.12	79.88	68.63	73.10	62.75		
= 7 Jets	42.60	69.55	63.29	69.60	56.16		
= 8 Jets	35.29	62.17	60.82	68.18	52.52		
= 9 Jets	29.63	56.08	56.83	66.79	48.92		
= 10 Jets	23.86	50.38	54.37	65.87	45.63		
= 11 Jets	22.35	43.18	52.65	69.32	44.32		
= 12 Jets	26.03	45.21	46.58	71.23	46.58		

DQC

< ロ ト < 回 ト < 三 ト < 三 ト</p>

$$\chi^{2} = \frac{(m_{bqq} - m_{b'q'q'})^{2}}{\sigma_{\Delta m_{bqq}}^{2}} + \frac{(m_{qq} - m_{W})^{2}}{\sigma_{W}^{2}} + \frac{(m_{q'q'} - m_{W})^{2}}{\sigma_{W}^{2}}$$
(1)

• Exhaustively evaluate χ^2 for each permutation of the event and take the minimum as the best reconstruction

999

イロト イロト イヨト イヨト

Permutation DNN

Results from
Erdmann et al

Jet selection	Algorithm	Reconstruction efficiency				
		all	Whad	$b_{\rm had}$	b_{lep}	
\geq 4 jets	DNN	80.2%	85.0%	82.2%	89.8%	
	KLFITTER (m_t^{fixed})	72.7%	79.7%	76.2%	83.3%	
	KLFitter	64.5%	76.5%	68.5%	76.3%	
\geq 5 jets	DNN	66.6%	75.8%	76.7%	83.6%	
	KLFITTER (m_t^{fixed})	36.5%	61.1%	59.4%	59.5%	
	KLFitter	27.6%	56.2%	48.1%	51.5%	
\geq 6 jets	DNN	57.1%	68.3%	72.7%	79.3%	
	KLFITTER (m_t^{fixed})	20.7%	47.8%	47.5%	46.6%	
	KLFitter	14.1%	42.1%	36.0%	38.8%	

- Both DNN and KLFitter systematically lower in our dataset than in this dataset (NB: results presented as ≥ N jets so not always directly comparable)
- Trends consistent

< ロ ト < 回 ト < 三 ト < 三 ト</p>