

Four top quark production in SMEFT

[2208.04962]

in collaboration with Rafael Aoude, Fabio Maltoni, Eleni Vryonidou

Hesham El Faham hesham.el.faham@vub.be

Vrije Universiteit Brussel and Université catholique de Louvain, Belgium

TOP2022, Durham, Sep 6th, 2022

Introduction to *t*ttt

- Rare processes with distinctive signatures
- Firstly computed at NLO in QCD in [1206.3064]
- Available in event generators [1405.0301] [1507.05640]
 [2110.15159]
- Complete NLO including EW were computed in [1711.02116] $\rightarrow \sigma_{NLO}^{SM} \sim 12$ fb $\pm 20\%$ at $\sqrt{s} = 13$ TeV
- Experiment; ATLAS: 24^{+7}_{-6} fb, CMS: $12.6^{+5.8}_{-5.2}$ fb, with evidence of 4.7σ by ATLAS

see also talks by Jan van der Linden and Melissa van Beekveld

Introduction to $t\bar{t}t\bar{t}$

[1602.01934][1711.02116][2008.11743][2010.05915]

In the SM, the EW scattering is important, however, there are large cancellations in interfering with purely-QCD ones

Introduction to $t\bar{t}t\bar{t}$

[1602.01934][1711.02116][2008.11743][2010.05915]

In the SM, the EW scattering is important, however, there are large cancellations in interfering with purely-QCD ones

In SMEFT, the EFT interference with the SM EW amplitudes can not be neglected, e.g.

Hesham El Faham \cdot Four top quark production in SMEFT \cdot TOP2022, Durham, Sep 6th, 2022

What did we do?

Considered **all** QCD and EW-induced, splitting to α and κ_t , e.g.

$$d\sigma_{\mathrm{int},gg,[4\mathsf{F}]} = \alpha_s^3 \, d\sigma_{\mathrm{int},gg}^{(3,0,0)} + \alpha_s^2 \left(\alpha \, d\sigma_{\mathrm{int},gg}^{(2,1,0)} + \kappa_t \, d\sigma_{\mathrm{int},gg}^{(2,0,1)} \right)$$
$$d\sigma_{\mathrm{int},gg,[4\mathsf{F}]} = \alpha_s^3 \cdots + \alpha_s^2 \cdots + \alpha_s^1 \cdots + \alpha_s^0 \ldots$$

the total interference cross-section reads

$$\sigma_{INCL} = \sigma_3 + \sigma_2 + \sigma_1 + \sigma_0$$

and then systematically ...

- obtain differential and inclusive predictions for all relevant SMEFT operators
- toy fit to illustrate potential bounds on the effective coefficients

An example: 4H LHC inclusive predictions

σ₂ is dominant in all 4-heavy → 'non-naive' Sub-leading terms dictate the sign of the interference

Hesham El Faham + Four top quark production in SMEFT + TOP2022, Durham, Sep 6^{th} , 2022

The big picture

	4H	2L2H	2F	OF
$\alpha_{s} = 4$	×	×	C _{tG}	CG
$\alpha_{s} = 3$	-	$\begin{matrix} c_{Qq}^{83}, c_{Qu}^8, c_{tq}^8, c_{Qd}^8, c_{tu}^8, c_{dq}^8, c_{td}^8, c_{Qq}^{81} \\ c_{Qq}^{11}, c_{Qu}^1, c_{tq}^1, c_{Qd}^1, c_{tu}^1, c_{td}^1 \end{matrix}$	$c_{t\varphi}, c_{tZ}, c_{tW}$	-
$\alpha_{s} = 2$	$c_{QQ}^8, c_{QQ}^1, c_{Qt}^8, c_{Qt}^1, c_{tt}^1$	C ³¹ Qq	$c_{arphi t}, c_{arphi Q}^{(-)}$	-
$\alpha_{s} = 1$	-	-	-	$c_{arphi G}$
$\alpha_{s} = 0$	-	-	-	-

The set of **non-naive** operators are

all 4-heavy and
$$\{\mathcal{O}_{Qq}^{3,1}, \mathcal{O}_{t\varphi}, \mathcal{O}_{tG}, \mathcal{O}_{\varphi Q}^{(-)}, \mathcal{O}_{\varphi t}, \mathcal{O}_{\varphi G}\}$$

4H LHC differential predictions

Z/ γ contributions are dominant \rightarrow expected from the inclusive study

• Mild interference growth with $m_{tttt} \sim \sqrt{s}$

Hesham El Faham \cdot Four top quark production in SMEFT \cdot TOP2022, Durham, Sep 6 $^{
m th}$, 2022

Toy fit

 $\textbf{Goal} \rightarrow \text{provide}$ illustrative constraints on WCs

All fit results are shown in **two cases:** when including **only QCD contributions**, and when **including all terms**

LHC

- Available measurements are ATLAS: 24⁺⁷₋₆ fb, CMS: 12.6^{+5.8}₋₅ fb
- Theory prediction of 12 ±20% fb [1711.02116]
- HL-LHC
 - We assume the measurement sits on the SM rate, within an expected total experimental uncertainty of 28% [1902.04070]
 - Assume 20% total theoretical uncertainty
- FCC-hh
 - Same as HL-LHC but we keep 5% total experimental uncertainty

Toy fit

 $\textbf{Goal} \rightarrow \text{provide}$ illustrative constraints on WCs

All fit results are shown in **two cases:** when including **only QCD contributions**, and when **including all terms**

LHC

- Available measurements are ATLAS: 24⁺⁷₋₆ fb, CMS: 12.6^{+5.8}_{-5.2} fb
- Theory prediction of 12 ±20% fb [1711.02116]
- HL-LHC
 - We assume the measurement sits on the SM rate, within an expected total experimental uncertainty of 28% [1902.04070]
 - Assume 20% total theoretical uncertainty
- FCC-hh
 - Same as HL-LHC but we keep 5% total experimental uncertainty

We show three different fit results assessing different aspects of four-top production ...

Hesham El Faham ullet Four top quark production in SMEFT ullet TOP2022, Durham, Sep 6 $^{
m th}$, 2022

Toy fit: impact of subleading terms

At the linear interference level, the inclusion of subleading terms in 4H predictions is crucial

Hesham El Faham \cdot Four top quark production in SMEFT \cdot TOP2022, Durham, Sep 6th, 2022

Toy fit: impact of differential information

We add information from m_{tttt} in three bins ...

differential information improves sensitivity

Hesham El Faham \cdot Four top quark production in SMEFT \cdot TOP2022, Durham, Sep 6 $^{
m th}$, 2022

Toy fit: the big picture

■ The effect of subleading terms in 4H is diluted by including the quadratic contributions → 4H amplitudes are QCD-induced

• $\sqrt{s} = 100$ TeV will have a strong handle on all of the operators

- The EW scattering in four-top amplitudes is crucial element of its predictions
- Computed four-top SMEFT predictions considering all QCD and EW-induced amplitudes
- We defined a set of 'non-naive' operators for which formal subleading terms can not be neglected

all 4-heavy and
$$\{\mathcal{O}_{Qq}^{3,1}, \mathcal{O}_{t\varphi}, \mathcal{O}_{tG}, \mathcal{O}_{\varphi Q}^{(-)}, \mathcal{O}_{\varphi t}, \mathcal{O}_{\varphi G}\}$$

 Performed a toy fit to assess the impact of subleading terms and differential information in constraining relevant effective coefficients

Operators' definitions: 4F in Warsaw basis

$$\begin{aligned} \mathcal{Q}_{qq}^{1(ijkl)} &= (\bar{q}_i \gamma^{\mu} q_j) (\bar{q}_k \gamma_{\mu} q_l), \\ \mathcal{Q}_{qu}^{1(ijkl)} &= (\bar{q}_i \gamma^{\mu} q_j) (\bar{u}_k \gamma_{\mu} u_l), \\ \mathcal{Q}_{qd}^{1(ijkl)} &= (\bar{q}_i \gamma^{\mu} q_j) (\bar{d}_k \gamma_{\mu} d_l), \\ \mathcal{Q}_{ud}^{1(ijkl)} &= (\bar{u}_i \gamma^{\mu} u_j) (\bar{d}_k \gamma_{\mu} d_l), \\ \hat{\mathcal{Q}}_{ud}^{1(ijkl)} &= (\bar{q}_i u_j) \epsilon (\bar{q}_k d_l), \end{aligned}$$

$$\begin{aligned} \mathcal{Q}_{qq}^{3(ijkl)} &= (\bar{q}_i \gamma^{\mu} \tau^l q_j) (\bar{q}_k \gamma_{\mu} \tau^l q_l), \\ \mathcal{Q}_{qu}^{8(ijkl)} &= (\bar{q}_i \gamma^{\mu} T^A q_j) (\bar{u}_k \gamma_{\mu} T^A u_l), \\ \mathcal{Q}_{qd}^{8(ijkl)} &= (\bar{q}_i \gamma^{\mu} T^A q_j) (\bar{d}_k \gamma_{\mu} T^A d_l), \\ \mathcal{Q}_{ud}^{8(ijkl)} &= (\bar{u}_i \gamma^{\mu} T^A u_j) (\bar{d}_k \gamma_{\mu} T^A d_l), \\ ^{\dagger} \mathcal{Q}_{quqd}^{8(ijkl)} &= (\bar{q}_i T^A u_j) \epsilon (\bar{q}_k T^A d_l), \\ \mathcal{Q}_{uu}^{(ijkl)} &= (\bar{u}_i \gamma^{\mu} u_j) (\bar{u}_k \gamma_{\mu} u_l) \end{aligned}$$

Operators' definitions: 2F and 0F in top-basis

$$\begin{split} \mathcal{Q}_{tB} &= i \big(\bar{Q} \tau^{\mu\nu} t \big) \, \tilde{\varphi} \, \mathcal{B}_{\mu\nu} + \text{h.c.}, \\ \mathcal{O}_{tW} &= i \big(\bar{Q} \tau^{\mu\nu} \tau_l t \big) \, \tilde{\varphi} \, \mathcal{W}_{\mu\nu}^l + \text{h.c.}, \\ \mathcal{O}_{tZ} &= -\mathcal{Q}_{tB} / \sin \theta_{w}, \\ \mathcal{O}_{tG} &= i g_s \left(\bar{Q} \tau^{\mu\nu} \, T_A t \right) \, \tilde{\varphi} \, \mathcal{G}_{\mu\nu}^A + \text{h.c.}, \\ \mathcal{O}_{eq} &= i \big(\varphi^{\dagger} \stackrel{\leftrightarrow}{D}_{\mu} \varphi \big) \big(\bar{t} \, \gamma^{\mu} t \big), \\ \mathcal{O}_{eq} &= i \big(\varphi^{\dagger} \stackrel{\leftrightarrow}{D}_{\mu} \tau_l \varphi \big) \big(\bar{Q} \, \gamma^{\mu} \, \tau^l Q \big), \\ \mathcal{O}_{\varphi Q}^{(-)} &= i \big(\varphi^{\dagger} \stackrel{\leftrightarrow}{D}_{\mu} \varphi \big) \big(\bar{Q} \, \gamma^{\mu} \, Q \big) \end{split}$$

 Q_{tB} introduced in the Warsaw basis to show the SMEFTatNLO rotation of the O_{tZ} operator; the coefficients of O_{tW} and O_{tZ} reads

$$c_{tW} = C_{tW}, \ c_{tZ} = -\sin\theta_{w}C_{tB} + \cos\theta_{w}C_{tW}$$

 $c_i \rightarrow$, $C_i \rightarrow$ Warsaw basis. Purely bosonic operators are defined as follows:

$$\mathcal{O}_{\varphi G} = \left(\varphi^{\dagger}\varphi - \frac{v^{2}}{2}\right) G_{A}^{\mu\nu} G_{\mu\nu}^{A}, \qquad \qquad \mathcal{O}_{G} = g_{s} f_{ABC} G_{\mu\nu}^{A} G_{\rho}^{B,\nu\rho} G_{\rho}^{C,\mu}$$

Hesham El Faham • Four top quark production in SMEFT • TOP2022, Durham, Sep 6th, 2022

Decomposition of the SM cross-section

\sqrt{s}	$\mathscr{O}(\alpha_{s}^{4})$	$\mathscr{O}(\alpha_s^3 \alpha)$	$\mathscr{O}(\alpha_s^3 \alpha_t)$	$\sum_{n} \mathscr{O}(\alpha_{s}^{2} \alpha_{w}^{n})$	$\sum_{n} \mathscr{O}(\alpha_{s} \alpha_{w}^{n})$	$\sum_{n} \mathscr{O}(\alpha_{\mathrm{w}}^{n})$	Inclusive
13 TeV	6.15	-1.44	-0.58	2.33	×	×	6.46
100 TeV	2570	-313	-197	753	×	×	2812

In orders of α_s and $\alpha_w \equiv \alpha + \alpha_t$

- EW contributions, i.e. $\mathscr{O}(\alpha_s^2 \alpha_w^2)$, are significant, yet the interference of the corresponding amplitudes with QCD ones, i.e. $\mathscr{O}(\alpha_s^3 \alpha_w)$, dilutes their effect
- Same cancellations, yet even larger, are observed at NLO in [1711.02116]

tttt in SMEFT: operators's insertions

Four-fermion (4F); 4-heavy (4H) and 2-heavy 2-light (2H2L)

Relevant two-fermion (2F) and purely-bosonic (0F);

$$\{\mathcal{O}_{t\varphi}, \mathcal{O}_{tZ}, \mathcal{O}_{tW}, \mathcal{O}_{tG}, \mathcal{O}_{\varphi Q}^{(-)}, \mathcal{O}_{\varphi t}, \mathcal{O}_{G}, \mathcal{O}_{\varphi G}\}$$

LO expansion

In the presence of dim-6 SMEFT operators, the scattering amplitude reads

$$\mathcal{A} = \mathcal{A}_{\mathrm{SM}} + \frac{1}{\Lambda^2} \mathcal{A}_{(\mathrm{d6})} + \frac{1}{\Lambda^4} \big(\mathcal{A}_{(\mathrm{d6})^2} + \mathcal{A}_{(\mathrm{d8})} \big),$$

leading to the partonic differential cross-section

$$d\sigma = d\sigma_{\rm SM} + rac{1}{\Lambda^2} d\sigma_{\rm int} + rac{1}{\Lambda^4} (d\sigma_{
m quad} + d\sigma_{
m dbl} + d\sigma_{
m d8}).$$

Lets just focus on the linear interference,

$$egin{aligned} & d\sigma_{ ext{int},gg} + d\sigma_{ ext{int},qq} \ & \sim & 2 \mathfrak{R} \left(\mathcal{A}_{ ext{SM},gg} \, \mathcal{A}_{ ext{EFT},gg}^{\dagger}
ight) + 2 \mathfrak{R} \left(\mathcal{A}_{ ext{SM},qq} \, \mathcal{A}_{ ext{EFT},qq}^{\dagger}
ight) \end{aligned}$$

LO expansion

Write down the SM amplitudes (skipping $q\bar{q}$ -mode for simplicity),

$$\mathcal{A}_{\mathrm{SM},gg}^{(ij,k)} = \alpha_s^2 \, \mathcal{A}_{\mathrm{SM},gg}^{(2,0,0)} + \alpha_s \left(\alpha \, \mathcal{A}_{\mathrm{SM},gg}^{(1,1,0)} + \alpha_t \, \mathcal{A}_{\mathrm{SM},gg}^{(1,0,1)} \right),$$

and the EFT ones,

$$\mathcal{A}_{\mathrm{EFT},gg,[4\mathsf{F}]}^{(i,j,k)} = \alpha_{\mathsf{s}} \mathcal{A}_{\mathrm{EFT},gg\,[4\mathsf{F}]}^{(1,0,0)}.$$

Do some work and then write the cross-section,

$$d\sigma_{\mathrm{int},gg,[4\mathrm{F}]} = \alpha_{\mathrm{s}}^{3} d\sigma_{\mathrm{int},gg}^{(3,0,0)} + \alpha_{\mathrm{s}}^{2} \left(\alpha \, d\sigma_{\mathrm{int},gg}^{(2,1,0)} + \kappa_{t} \, d\sigma_{\mathrm{int},gg}^{(2,0,1)} \right),$$

The total interference (including $q\bar{q}$ -mode) cross-section reads

$$\sigma_{INCL} = \sigma_3 + \sigma_2 + \sigma_1 + \sigma_0,$$

where σ_3 is the cross-section induced from all terms with α_s^3 , etc.

Hesham El Faham \cdot Four top quark production in SMEFT \cdot TOP2022, Durham, Sep 6th, 2022

$q\bar{q}$ -initiated σ_{int} in 4F

$$d\sigma_{\text{int},qq,[4F]} = \alpha_s^3 \, d\sigma_{\text{int},qq}^{(3,0,0)} + \alpha_s^2 \left(\alpha \, d\sigma_{\text{int},qq}^{(2,1,0)} + \alpha_t \, d\sigma_{\text{int},qq}^{(2,0,1)} \right) + \alpha_s \left(\alpha^2 \, d\sigma_{\text{int},qq}^{(1,2,0)} + \alpha^{3/2} \, \alpha_t^{1/2} \, d\sigma_{\text{int},qq}^{(1,3/2,1/2)} + \alpha \alpha_t \, d\sigma_{\text{int},qq}^{(1,1,1)} + \alpha_t^2 \, d\sigma_{\text{int},qq}^{(1,0,2)} \right) + (\alpha^3) \, d\sigma_{\text{int},qq}^{(0,3,0)} + (\alpha^{5/2} \, \alpha_t^{1/2}) \, d\sigma_{\text{int},qq}^{(0,5/2,1/2)} + (\alpha^2 \, \alpha_t) \, d\sigma_{\text{int},qq}^{(0,2,1)} + (\alpha^{3/2} \, \alpha_t^{3/2}) \, d\sigma_{\text{int},qq}^{(0,3/2,3/2)} + (\alpha \, \alpha_t^2) \, d\sigma_{\text{int},qq}^{(0,1,2)}$$

2H2L at $\sqrt{s} = 13$ TeV

dominant $\sigma_3 \rightarrow$ almost all 2H2L are 'naive' operators

■ All enter in *qq*-induced production → EW scattering effects are less critical in interference with *qq*-initiated amplitudes?

Relevant 2F and 0F at $\sqrt{s} = 13$ TeV

Non-four-fermion operators can also be 'non-naive'

Hesham El Faham + Four top quark production in SMEFT + TOP2022, Durham, Sep $6^{\rm th}, 2022$

Rest of 4-heavy at $\sqrt{s} = 13$ TeV

2F and 0F differential predictions $\sqrt{s} = 13$ TeV

Different EFT structure than contact-term insertions (4F) \rightarrow can be inferred from the amplitudes scaling with $\sim E$

Hesham El Faham • Four top quark production in SMEFT • TOP2022, Durham, Sep 6th, 2022

2F and 0F differential predictions $\sqrt{s} = 13$ TeV

coefficients approximate values extracted from [2105.00006]

FCC-hh 4H

Hesham El Faham • Four top quark production in SMEFT • TOP2022, Durham, Sep 6th, 2022

FCC-hh 2H2L

	$\sigma_{SM}^{tttt}(LO) =$	2.8pb @ √	<u>s</u> = 100 <i>Te</i>	v	2-heavy 2-light $\sigma_{int.}[fb]$										
INCL -	0.48	4.37	3.19	5.38	2.27	2.49	1.87	1.72	-1.24	0.14	0.15	-0.16	-0.35	-0.94	• 5
σ_3 ·	0.59	3.39	2.52	4.27	1.79	2.01	1.42	-0.28	-1.57	-0.12	-0.25	-0.14	-0.93	-0.67	• 3
σ2 -	-0.19	0.41	0.29	0.54	0.25	0.18	0.23	1.56	0.24	0.18	0.32	0.01	0.44	-0.22	• 2
σ_1 ·	0.08	0.57	0.34	0.58	0.23	0.31	0.23	0.26	0.06	0.04	0.05	-0.02	0.08	-0.03	• 1
σ_0 -	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.18	0.04	0.03	0.03	-0.01	0.05	-0.02	· -1
	cQq83	cQq81	cQu8	ctq8	cQd8	ctu8	ctd8	cQq13	cQq11	cQu1	ctq1	cQd1	ctu1	ctd1	

FCC-hh relevant 2F and 0F

Hesham El Faham \cdot Four top quark production in SMEFT \cdot TOP2022, Durham, Sep 6 $^{
m th}$, 2022

FCC 4H differential predictions

FCC 2F and 0F differential predictions

