

Measurement of the top quark pole mass from $t\bar{t}$ +jet events at 13 TeV

[arXiv:2207.02270]

Sebastian Wuchterl (DESY) for CMS

15th International Workshop on Top Quark Physics (TOP 2022)

Additional jet

W⁺

í-

00000000

p observable for tt+jet production

- To extract mt^{pole}, measurements compared to well-defined theoretical observables
 - See M. Defranchis' talk yesterday
 - Increase sensitivity to m_t^{pole} by requiring additional jet $\rightarrow t\bar{t}+jet$
 - → Observable p particularly suitable [1]

$$\mathcal{R}(m_{\rm t},\rho) = \frac{1}{\sigma_{\rm t\bar{t}+jet}} \frac{d\sigma_{\rm t\bar{t}+jet}}{d\rho}$$

with $\rho = \frac{2m_0}{m_{\rm t\bar{t}+jet}}, m_0 = 170 \,{\rm GeV}$

[1] <u>arXiv:1303.6415</u>

Sebastian Wuchterl (DESY)

MVA based kinematic reconstruction

Sebastian Wuchterl (DESY)

Measurement of the top quark pole mass from $t\bar{t}$ +jet events at 13 TeV

Regression neural network

- Basic 4-momenta & high level as input variables
- Including also solutions of analytical methods
- 100% reconstruction efficiency
- **Factor two improvement** in ρ resolution wrt. to two common CMS methods (4-8%)

tt+jet split in 4 bins of ρ, treated as independent processes [0., 0.3, 0.45, 0.7, 1.]

isation		normalised differenti cross section	al	fit of top
ding	NLO	theory prediction		

- Best discrimination to maximize sensitivity
- Multi-classifier neural network tt+jet signal / tt+0 jet background / Z+jets
- - auxiliary variable in fit

- & systematics using event categories
- Very good post-fit data/prediction

Sebastian Wuchterl (DESY)

Results: Absolute and normalised differential cross section

Sebastian Wuchterl (DESY)

Results: Top quark mass extraction

- $\chi^2 = \Delta^T V^{-1} \Delta$

 - w/ extrapolation uncertainties
 - uncs. outside acceptance

Sebastian Wuchterl (DESY)

Conclusions

- First measurement of m_t^{pole} using tt+jet in CMS / at 13 TeV
 - MVA techniques for p reconstruction and classification
 - Unfolding via profiled likelihood fit
 - Extraction of m_t^{pole} at NLO
- Triggered improvements in theory prediction
 - Implementation of dynamic scale
- < 0.8 % precision, compatible with previous measurements

Thank you for your attention!

TLAS+CMS Preliminary IC <i>top</i> WG	+CMS Preliminary m _{top} from cross-section measurem WG			
total stat	├	m _{top} ± tot (stat ± syst ± theo)	Ref.	
(tī) inclusive, NNLO+NNLL				
「LAS, 7+8 TeV ►		172.9 ^{+2.5} -2.6	[1]	
MS, 7+8 TeV		173.8 ^{+1.7} -1.8	[2]	
MS, 13 TeV		169.9 $^{+1.9}_{-2.1}$ (0.1 ± 1.5 $^{+1}_{-1.1}$.2 5) [3]	
ſLAS, 13 TeV ⊢		173.1 ^{+2.0} _{-2.1}	[4]	
IC comb., 7+8 TeV LHC <i>top</i> wG ⊢		173.4 ^{+1.8} -2.0	[5]	
(tī+1j) differential, NLO				
LAS, 7 TeV		173.7 $^{+2.3}_{-2.1}$ (1.5 ± 1.4 $^{+7}_{-0}$	[.5] [6]	
MS, 8 TeV (*)		169.9 ^{+4.5} _{-3.7} (1.1 ^{+2.5} ^{+3.6} _{-3.1} ^{-1.6}) [7]	
ΓLAS, 8 TeV ►+■+-1		171.1 $^{+1.2}_{-1.0}$ (0.4 ± 0.9 $^{+0}_{-0}$).7 .3) [8]	
MS, 13 TeV (*)	—	172.9 ^{+1.4} -1.4	[9]	
(tīt) n-differential, NLO				
ΓLAS, n=1, 8 TeV		$173.2 \pm 1.6 \ (0.9 \pm 0.8$	± 1.2) [10]	
MS, n=3, 13 TeV ⊢⊷ I		170.5 ± 0.8	[11]	
_{top} from top quark decay	[1] EPJC 74 (20 [2] .IHEP 08 (20	(14) 3109 [6] JHEP 10 (2015) 121	[11] EPJC 80 (2020) 658	
CMS, 7+8 TeV comb. [10]	[3] EPJC 79 (20 [4] EPJC 80 (20	(19) 368 [8] JHEP 11 (2019) 150 (20) 528 [9] CMS-PAS-TOP-21-008	[12] PRD 93 (2016) 0720 [13] EPJC 79 (2019) 290	
ATLAS, 7+8 TeV comb. [11]	[5] arXiv:2205.1	3830 [10] EPJC 77 (2017) 804	* preliminary	
160 165 170	175	180 185	190	
m,	igeV]		
	- ч~			

Motivation Advantages of p measurement

[1] <u>arXiv:1303.6415</u>

Sebastian Wuchterl (DESY)

From $\sqrt{s} = 8$ TeV to 13 TeV Improvements & drawbacks

- Change in \sqrt{s} leads to change of shape of \mathscr{R} distribution
 - Less sensitivity at 13 TeV \rightarrow
- Progress in theory prediction:
 - Dynamic scale implemented
 - \rightarrow Flat LO/NLO scale factors
 - → Symmetric and reduced scale uncertainties
 - JHEP 05 (2022) 146

From $\sqrt{s} = 8$ TeV to 13 TeV Improvements & drawbacks

Selection & Analysis strategy

- 2 opposite-charged leptons: $\mu^{+}\mu^{-}, e^{\pm}\mu^{\mp}, e^{+}e^{-}$ $p_T > 25$ (20) GeV & $|\eta| < 2.4$
- Jets with $p_T > 30 \text{ GeV } \& |\eta| < 2.4$
- NN based kinematic reconstruction of p

Sebastian Wuchterl (DESY)

Measurement of the top quark pole mass from $t\bar{t}$ +jet events at 13 TeV

- e^+e^- , $\mu^+\mu^-$ channel:
 - Suppress Z+jets background
- At least 1 b jet:

normalised

differential cross

section

fixed-order theory

prediction

- Loose working point (10% mistagging rate)
 - b jet energy regression

fit of top mass

Kinematic reconstruction using neural networks

- Neural network regression for analysis
 - Basic 4-momenta & high level input variables
 - Uses also solutions of analytical methods
 - Has 100% reconstruction efficiency

Factor two improvement wrt. to two common CMS methods:

- Full kin. reconstruction using mass constraints
 - top/antitop four-momenta solved individually
- Loose kin. reconstruction without mt constraint
 - Solve only for tt system

Binning in p Data vs. prediction

- Use neural-network reconstruction for the measurement
 - Same response in data & simulation
- Determine binning in p at parton + detector level:
 - Use same symmetric binning
 - Based on studies of:
 - Purity & stability
 - Conditioning of unfolding problem
 - \rightarrow 4 bins:

[0, 0.3]	
[0.35, 0.45]	
[0.45, 0.7]	
[0.7, 1]	

Maximum likelihood unfolding **Overview & event categorization**

- Introduce signal strength parameters rk for each bin Multidimensional fit to directly measure at parton level •
 - Maximize acceptance \rightarrow
 - Constrain syst. uncs. using nuisance parameters \rightarrow
- Achieved via:
 - Event categories (e.g. $\mu^+\mu^-$, $e^\pm\mu^\mp$, e^+e^-)
 - Bin in N_{b jet} and ρ_{reco} to increase signal sensitivity mt^{MC} free floating parameter to mitigate dependence Use $N_{jet} = 1,2$ as control regions to constrain tt (+0 jet)
 - background and uncertainties
 - Fit normalisation of $t\bar{t}+0$ jet bkg simultaneously _____

$$v_i = \sum_k s_i^k (\sigma_{t\bar{t}+jet}^k, m_t^{MC}, \vec{\lambda}) + \sum_j b_i^j (w_j, m_t^{MC}, \vec{\lambda})$$

- → Consistent modeling of systematic uncertainties and correlations
- Background fitted and subtracted in fit \rightarrow

Sebastian Wuchterl (DESY)

Nuisance paramater impacts And constraints/pulls

Fit constraint (obs.)

Fit constraint (exp.)

+1 σ Impact (obs.)

+1o Impact (exp.)

CMS Preliminary

	JES Pythia/Herwig gluon response	
0.954 ^{+0.029} _{-0.030}	tt+0 jet normalization r	
	electron identification	
	luminosity	
-0.6 ^{+0.5} _{-0.6}	m ^{MC} _t - 172.5 GeV	
	top quark p _T reweighting	
	trigger efficiency eµ	
	jet pileup identification mistag rate	
	parton shower FSR scale tt	
	L1 trigger prefiring	
	muon isolation systematic component	
	DY+jets normalization N _{b jet} >1	
	parton shower ISR scale tt	
· · · · · · · · · · · · · · · · · · ·	DY+jets normalization N _{b jet} =1	
	JES Pythia/Herwig diff. in fragmentation and UE	
	muon identification systematic component	
	Barlow-Beeston $\mu\mu \rho < 0.3 \text{ N}_{jet} > 2 \text{ N}_{b jet} = 1 \text{ bin 1}$	
	muon identification statistical component	
	JES jet p_{T} resolution 1.3 <l<math>\etal<2.4</l<math>	
	Barlow-Beeston ee ρ >0.7 N _{jet} >2 N _{b jet} =1 bin 1	
1 -0-1	single top normalization	
	JES difference between dijet and Z+jet	
	JER ΙηΙ<1.93	
	color reconnection QCD-inspired	
	Barlow-Beeston ee ρ >0.7 N _{jet} >2 N _{b jet} >1 bin 2	
	semi-leptonic B branching ratio	
	JES SinglePionECAL	
	ME renormalization scale single top	
	trigger efficiency ee	
	JES PileUpDataMC	
-2 -1 0 1 2		
$(\hat{\theta} - \theta_{-})/\Delta \theta$		
(0/		

Sebastian Wuchterl (DESY)

MVA methods using neural networks **Event classification**

- trained on aMC@NLO simulation
- discriminate between three classes:
 - tt+jet signal, tt(+0 jet) background,
 - Z+jets
- decorrelated output score from
 - reconstructed p

(using Unsupervised Domain Adaptation by Backpropagation)

MVA methods using neural networks **Kinematic reconstruction**

MVA methods using neural networks **Kinematic reconstruction**

Unsupervised Domain Adaptation by Backpropagation:

- decorrelation of the NN output from different variables, classes, training sets.
- inserting additional layers and output node targeting to regress p
 - add layer in front a layer that reverts the gradient
- classification performance not degraded

see arXiv:1409.7495

Kinematic Reconstruction of the tt-system arXiv:1811.06625

- inputs:
 - 2 jets
 - 2 leptons
 - MET
- constraints:
 - $m_t, m_{\bar{t}} = 172.5 \text{ GeV}$
 - $m_{W+}, m_{W-} = 80.4 \text{ GeV}$
 - $p_T(v, \bar{v}) = MET$
- unknowns:
 - 3-momenta: v, v
- solutions with b-tagged jets are preferred
- reconstruct event 100 times:
 - W mass smeared according to Breit-Wigner distribution
 - Lepton, b-Jet energies smeared according to detector resolution
 - Weights are calculated based on m_{lb} spectrum
 - Take weighted average as solution
- Efficiency > 90%

$$p_{x,y,z}^{top} = \frac{1}{w} \sum_{i=0}^{100} w_i \cdot (p_{x,y,z}^{top})_i$$

Full kinematic reconstruction From CMS-PAS-TOP-20-006

DE

Kinematic Reconstruction of the tt-system Another approach

arXiv:1904.05237

- "Loose kinematic reconstruction":
 - drop m_t requirement
 - no bias on top mass
 - reconstruct $v\bar{v}$ system as a whole
 - only total tt-system reconstruction

•
$$p_T(v\bar{v}) = p_T(MET)$$

- $p_z(v\overline{v}) = p_z(\overline{II}), E(v\overline{v}) = E(\overline{II})$
- requirements: $M(v\bar{v}) \ge 0$, $M(W^+W^-) \ge 2m_W$
- prefer solutions with higher b-tagged jet multiplicity over others
- Obtained kinematics similar to full kinematic reconstruction
- Efficiency similar

Full vs loose kinematic reconstruction From CMS-PAS-TOP-20-006

Top quark mass

direct measurements

measuring mt^{MC} using reconstructed decay products

 m_t^{MC}

- very high experimental precision
 - ~0.5 GeV
- relies on details of MC simulation

Reference

DE

*m*_t indirect measurements

- extract m_t in well defined renormalisation scheme (pole, MS, …)
- measuring cross section with direct sensitivity to mt
 - either inclusive or differential

28/8