

Marcos Miralles López¹ on behalf of the ATLAS Collaboration

Introduction and strategy

• **First** search for the **leptonic charge asymmetry** (A_c^l) of $t\overline{t}W$ in the 3*l* final state using the full Run2 dataset

$$A_c^l = \frac{N(\Delta \eta^l > 0) - N(\Delta \eta^l < 0)}{N(\Delta \eta^l > 0) + N(\Delta \eta^l < 0)}, \text{ with } \Delta \eta^l = \left|\eta_{\overline{l}}\right| - \left|\eta_l\right|$$

- Measured ATLAS and CMS ttW rate is consistently in tension with SM prediction <u>ATL-PHYS-PUB-2022-030</u>
 - A_c^l insensitive to rate \rightarrow independent way to probe $t\overline{t}W$
- This asymmetry is sensitive to new physics and is predicted to be large by the SM
- Binned max. likelihood fit is used to extract A^l_c at reconstruction level and unfolded to particle level

Process	tī	$t\bar{t}W$
A_c^t [%]	$0.45 \substack{+0.09 \\ -0.06}$	$2.24^{+0.43}_{-0.32}$
A^ℓ_c [%]	_	$-13.16_{+1.12}^{-0.81}$

ATLAS-CONF-2022-06

Event selection

Odd lepton: always from (anti)top quark Even leptons: need to select the correct one

- Selection of correct even lepton done using a BDT with 71% accuracy
- SRs are split into jet and b-jet (77% WP) multiplicity to improve S/B ratio
 - Veto of OSSF within ±10 GeV of the Z peak
 - Veto on electrons originating from γ -conv
- Main 4 backgrounds are constrained in enriched CRs
 - Prompt leptons from $t\bar{t}Z$ require one Z candidate
 - Non-prompt lepton from heavy flavour decays (mostly from tt) – split in the flavour of the softest lepton
 - Non-prompt lepton from γ -conv (mostly from $t\overline{t}$) – select electrons originating from γ -conv

Signal regions and A_c^l extraction

- Regions are split according to the sign of $\Delta \eta^l$
- A^l_c is extracted **directly** from the fit as a function of the event yields

•
$$A_c^l = \frac{N(\Delta \eta^l > 0) - N(\Delta \eta^l < 0)}{N(\Delta \eta^l > 0) + N(\Delta \eta^l < 0)}$$

 Good post-fit agreement in SRs

 $\Delta \eta^l > 0$

 $\Delta \eta^l < 0$

Control regions

6th Sep 2022 Marcos Miralles - Top 2022

Reconstruction level fit

- Total of 10 free-floating parameters extracted
 simultaneously from a binned max. likelihood fit to real data
- Background NFs are split in $\Delta \eta^l$ to avoid being biased by data asymmetries
 - An uncertainty is added to account for the potential spurious impact of these bkg. NFs in the A_c^l
 - Quantified by comparing fits (Asimov SR + data CR) with and without the bkg. NF splitting

• $A_c^l(t\bar{t}W) = -0.123 \pm 0.136 \text{ (stat.)} \pm 0.051 \text{ (syst.)}$

• Leading syst. unc. comes from $t\overline{t}W$ and $t\overline{t}Z$ modelling

ATLAS-CONF-2022-062

Unfolding to particle level

- Unfolding is based on a profile-likelihood approach
 - Fitting particle level A^l_c of the truth bins by folding them and computing likelihood using data at reconstruction level
- No regularisation is used
- A fiducial phase space is defined which is close to the reco-level selection
 - Lepton-top association is based on m_{lb} discriminant (not the BDT)
 - Allows for easy phase space reconstruction, and independent MC generator implementation
- Injection tests are preformed to verify that non-SM asymmetries can be recovered after the unfolding
 - A small bias is observed and an unc. is assigned to account for it

Summary

- **First** search for the **leptonic charge asymmetry** of $t\bar{t}W$ in the 3*l* final state using the full Run2 dataset
- Lepton-top association is done using a BDT with 71% accuracy
- Observed A^l_c at reconstruction level:

 $A_{c}^{l}(t\bar{t}W) = -0.123 \pm 0.136 \text{ (stat.)} \pm 0.051 \text{ (syst.)}$

Expected: $A_c^l(t\bar{t}W)_{SM} = -0.084 + 0.005 - 0.003$ (scale) ± 0.006 (MC stat.)

• Unfolding to particle level:

 $A_{c}^{l}(t\bar{t}W)^{PL} = -0.112 \pm 0.170 \text{ (stat.)} \pm 0.055 \text{ (syst.)}$

Expected: $A_c^l(t\bar{t}W)_{SM}^{PL} = -0.063 + 0.007 + 0.004$ (MC stat.)

- Observation in agreement with SM prediction
- Analysis is severely <u>dominated by statistical</u> uncertainties
 - Leading source of systematic uncertainty 8 times smaller than statistical uncertainty

Back-Up

Evolution of the *A*^{*l*}_{*c*} [%]

Systematic impact on A_c^l

- Systematic impact for the reco-level and unfolded results
- Unc. due to the impact of the splitted bkg. NFs is the leading unc. in both cases
- Largest *fit* syst. unc. come mainly from MC modelling and
- Unfolding bias unc. is small in comparison

	$\Delta A_c^\ell(t\bar{t}W)$		
Experimental uncertainties			
Jet energy resolution	0.013		
Pile-up	0.007		
<i>b</i> -tagging	0.005		
Leptons	0.004		
$E_{\mathrm{T}}^{\mathrm{miss}}$	0.004		
Jet energy scale	0.003		
Luminosity	0.001		
MC modelling uncertainties			
$t\bar{t}W$ modelling	0.013		
$t\bar{t}Z$ modelling	0.010		
Non-prompt modelling	0.006		
$t\bar{t}H$ modelling	0.005		
Extra uncertainties			
$\Delta \eta^{\pm}$ dependency	0.046		
MC statistical uncertainty	0.019		
Data statistical uncertainty	0.136		
Total uncertainty	0.145		

Experimental uncertainties	
Leptons	0.014
Jet energy resolution	0.011
Pile-up	0.008
Jet energy scale	0.004
$E_{ m T}^{ m miss}$	0.002
Luminosity	0.001
Jet vertex tagger	0.001
MC modelling uncertainties	
$t\bar{t}W$ modelling	0.022
$t\bar{t}Z$ modelling	0.017
Non-prompt modelling	0.015
Others modelling	0.015
WZ/ZZ + jets modelling	0.014
$t\bar{t}H$ modelling	0.006
Extra uncertainties	
Unfolding bias	0.011
$\Delta \eta^{\pm}$ dependency	0.039
MC statistical uncertainty	0.027
Response matrix	0.009
Data statistical uncertainty	0.170
Total uncertainty	0.179

 $\Delta A_{a}^{\ell} (t\bar{t}W)^{\text{PL}}$

Ranking of systematics for A_c^l

- Ranking of syst. unc. for the reco-level and unfolded results
- Ranking of syst. is very similar for both fits
- Leading syst. unc. (ttW alt. modelling) is about 10 times smaller than stat. unc.

