

Measurements of differential cross sections for the production of top quark pairs in pp collisions at $\sqrt{s} = 13$ TeV with the CMS experiment

CMS-PAS-TOP-20-006

The 15th International Workshop on Top Quark Physics (TOP 2022)

Henriette Petersen

On behalf of the CMS Collaboration

HELMHOLTZ SPITZENFOR

Analysis overview

Differential cross sections performed with full Run 2 data:

- $\circ~$ Study details of $t\overline{t}$ production dynamics in different phase space regions.
- Compare to state of the art Standard Model predictions: window to new physics.

Study kinematical distributions and topologies of following objects

- $\circ t, \bar{t} \text{ and } t \bar{t}$
- $\circ~$ Leptons and b-jets
- Additional jet multiplicity

$t\bar{t}$ decays to prompt $e^{\pm}e^{\mp}$, $\mu^{\pm}\mu^{\mp}$ and $e^{\pm}\mu^{\mp}$ final states:

- Dilepton and single lepton triggers.
- \circ Two high p_{T} leptons.
- Two high $p_{\rm T}$ jets (≥ 1 b-tag).

1 million $t\bar{t}$ events after full selection in Run 2! Unprecedented precision.

Uncertainty contributions in unfolded cross sections

- Systematics dominated
- Experimental uncertainties are larger than theory uncertainties:

 main sources: Jet energy scale, lepton efficiency and background normalization
- Total uncertainties are in 2 20% range
- Overall uncertainty reduced by a factor of ~2 w.r.t. previous measurements

p_{T} of top and $tar{t}$

Left: comparison to different MC at NLO QCD:

- POW+PYT → PowhegV2+Pythia8
- □ FXFX+PYT → MG5_aMC@NLO[FxFx] +Pythia8
- △ POW+HER → PowhegV2+Herwig7

Right: comparison to beyond-NLO QCD (when available):

- aN³LO <u>N. Kidonakis</u>.
- MATRIX (NNLO) <u>M. Grazzini et al</u>.
- STRIPPER (NNLO) M. Czakon et al.
- MINNLOPS (NNLOPS)

Monni et al., results provided by S. Amoroso

p_(tī) [GeV]

p_{T} of top and $tar{t}$

- The 'POW+PYT' and 'FXFX+PYT' models predict harder $p_{\rm T}(t)$.
- *p*_T(*tt*) directly sensitive to additional gluon radiation.
 All models exhibit slight modulation.

5

New ratio observable: $p_{\rm T}(t)/{\rm m}(t\bar{t})$

- > The 'POW+PYT' and 'FXFX+PYT' models predict harder spectra than in data.
- Good description of data from predictions at beyond-NLO precision.

Proton momentum fraction

- Sensitive to gluon momentum density fractions up to ~ 0.2.
- The HERAPDF2.0 NLO prediction undershoots the data in outer regions of $log(\xi_1)$.

$t\bar{t}$ kinematics and extra jets multiplicity: $[n_{jet}^{0,1,2,3+}, m(t\bar{t}), y(t\bar{t})]$

Summary

\blacktriangleright Presented measurements of differential $t\bar{t}$ cross sections in the dilepton channel using full Run 2 data:

- Several new observables measured for the first time ever.
- Total uncertainties are reduced by a factor ~2.
- Comparison of results with predictions:
 - No single model at NLO or beyond-NLO precision provides a good description of the data in <u>all</u> measured cross sections.
 - beyond-NLO theory predictions provide
 - similar or improved descriptions of the data, e.g. for $p_{\rm T}(t)$.
 - \circ exceptions are e.g. $p_{\rm T}(t\bar{t})$, where theory scale uncertainties are large.

 $t\bar{t}$ + jets

All results are featured in the preliminary result <u>CMS-PAS-TOP-20-006</u>!

Lepton p_{T}

Lepton p_{T}

Stripper has larger slope w.r.t. data in high precision bins.

Masses of decay particle systems

- Study sensitivity to the top mass from proxies for $t\bar{t}$ mass system.
- Comparison to m_t^{MC} = 175.5 GeV and m_t^{MC} = 169.5 GeV:
 m(llbb) exhibits best sensitivity.

Kinematic reconstruction

• Input: leptons, jets,	ИЕТ
• Unknowns: \mathbf{p}_{v} , $\mathbf{p}_{\bar{v}}$	(6)
 Constraints: 	
▶ m _t , m _t	(2)
▶ mw+, mw⁻	(2)
$(\mathbf{p}_{v} + \mathbf{p}_{\bar{v}})_{T} = \mathbf{MET}$	(2)

Kinematic reconstruction

with additional details for loose kinematic reconstruction

Loose kinematic reconstruction

- No constraint on top mass
- Mass onset is accessible
- Can only reconstruct $t\overline{t}$ system

• Kinematic requirements: $p_{x,y}(\nu\bar{\nu}) = \text{MET}_{x,y}$ $p_z(\nu\bar{\nu}) = p_z(l\bar{l}), E_z(\nu\bar{\nu}) = E_z(l\bar{l})$ $M(\nu\bar{\nu}) \ge 0, M(\nu\bar{\nu}l\bar{l}) \ge 2M_W$

Comparisons to recent measurements from CMS and ATLAS

- No single model at NLO or beyond-NLO precision provides a good description of the data in <u>all</u> measured cross sections.
- Discrepancies between the predictions and data are enhanced in the doubledifferential measurements.

$p_{\rm T}(l)$

16