$t\bar{t}Z$ in the 4ℓ channel at NLO in QCD

presented by Jasmina Nasufi during TOP2022

published in JHEP 08 (2022) 060

in collaboration with G.Bevilacqua, H. B. Hartanto, M. Kraus and M. Worek

1. Modelling $pp \rightarrow e^+ \bar{\nu}_e \mu^- \nu_\mu \tau^+ \tau^- bb + X$ at $\sqrt{s} = 13$ TeV

• NWA: Includes only double-resonant diagrams with on-shell resonances, described via Dirac Delta distributions.

- We note large full off-shell effects originating from the $t\bar{t}\gamma^*$ contribution and interference effects.
- We investigate this contribution by introducing a window cut $|M_{\tau^+\tau^-} - m_Z| < X$, with $X \in \{10, 15, 20, 25\}$ GeV. We label it

6. Modelling II

- This cut reduces the full off-shell effects related to the *Z*-gauge boson.
- NLO QCD corrections to the top quark decays are 9%.

7. Conclusions

NLO QCD corrections to $t\bar{t}Z$ in the 4 ℓ channel are large and about 23%. They reduce the dominant theoretical uncertainty stemming from the scale variation to 6%. NLO QCD corrections to the top quark decays amount to 9% and must also be taken into account. Full off-shell effects are unusually large and around 11%, due to the photon induced contributions and Z/γ^* interference effects. They can be reduced to 0.3% – 3.4%, by imposing a cut $M_{\tau^+\tau^-}^X$ with $X \in \{10, 15, 20, 25\}$ GeV. These findings might be altered and enhanced in particular fiducial phase space regions, when differential observables are considered.