

Measurement of the top-quark mass in the $t\bar{t} \rightarrow dilepton$ channel with a template method, using the full Run 2 dataset in ATLAS

ATLAS-CONF-2022-058

Dimbiniaina Rafanoharana TOP2022

Importance of the top-quark mass and goal

- The top-quark mass m_{top} plays an important role in the test of the consistency of the Standard Model (SM):
- e.g: Direct measurement vs indirect determination of m_{top} and M_W

Eur. Phys. J. C (2018) 78:675

Previous ATLAS result: top-quark mass measurement using template method at 8 TeV in the $t\bar{t} \rightarrow$ dilepton channel [1]

On behalf of the ATLAS collaboration

Event preselection

- \hookrightarrow Aimed at selecting the maximum amount of signal events, while minimising the contamination from background events:
 - Two reconstructed leptons with opposite charge and with $p_T > 28 \text{ GeV}$
 - At least two reconstructed jets with $p_T > 25$ GeV, where exactly two of them must be *b*-tagged using the DL1r algorithm with the 70% working point
 - For events with same-flavour leptons, $m_{\ell\ell} < 80$ GeV or $m_{\ell\ell} > 100$ GeV, and $m_{\ell\ell} > 15 \text{ GeV}$

Event reconstruction

- Correct matching of *b*-tagged jet with its corresponding charged lepton is crucial to define an observable with a strong sensitivity to m_{top}
- Utilise a deep neural network (DNN) for this, which uses as input variables:
- kinematic variables of the individual objects

o0008 0.02 0.02 0.02	_ ● Data tī Single top	Diboson t+X NP/fake leptons	ATLAS Preliminary √s=13 TeV, 139 fb ⁻¹ dilector	
	Z+jets	颇 Unc.	dilepton	Ξ
Ш	\vdash			-

 $m_{\text{top}} = 172.99 \pm 0.41(stat.) \pm 0.74(syst.) \text{ GeV}$

 \rightarrow estimator: $m_{\ell b}^{reco} = min\{\frac{m_{\ell_1,b_1}+m_{\ell_2,b_2}}{2}, \frac{m_{\ell_1,b_2}+m_{\ell_2,b_1}}{2}\}$

- \rightarrow removing events with low $p_{T,\ell b}$ reduces modelling and jet energy scale (JES) uncertainties
- Aim: perform a measurement of m_{top} in the $t\bar{t} \rightarrow$ dilepton channel with a template method, using the full Run 2 dataset collected with the ATLAS detector

- kinematic variables and the invariant masses of all ℓb pairs
- Chosen permutation: the one with the highest DNN value, labelled DNN_{High}
- DNN_{High} can be used to optimise the selection:
 - Correctly matched events have a large DNN_{High} value, compared to incorrectly matched and unmatched events
 - Monte Carlo (MC) prediction on DNN_{High} agrees to the data within uncertainty

Analysis method: template method using unbinned maximum-likelihood fit

- Select ℓb pair with the larger pair transverse momentum $p_{T,\ell b}$
- Require:

Ge

2

Ratio

- $DNN_{High} > 0.65$
- ℓb pair transverse momentum $p_{T,\ell b} > 160$ GeV
- the selected ℓb pair to contain the *b*-tagged jet with the higher p_T of the event

Comparison of $t\bar{t}$ samples from the POWHEG hvq and $bb4\ell$ generators

- Investigation of the differences in $m_{\ell b}$ distributions and their impact on the measured m_{top}
- $bb4\ell$ [2] denotes an MC generator for $pp \rightarrow \ell^+ \nu \ell^{-'} \bar{\nu}' b\bar{b}$ production which:
- implements the interference between $t\bar{t}$ and tW
- provides an exact NLO treatment of spin correlations and off-shell effects

Result and Discussion

Uncertainty breakdown

	$m_{\rm top} [{\rm GeV}]$
Result	172.63
Statistics	0.20
Method	0.05 ± 0.04
Matrix-element matching	0.35 ± 0.07
Parton shower and hadronisation	0.08 ± 0.05
Initial- and final-state QCD radiation	0.20 ± 0.02
Underlying event	0.06 ± 0.10
Colour reconnection	0.29 ± 0.07
Parton distribution function	0.02 ± 0.00
Single top modelling	0.03 ± 0.01
Background normalisation	0.01 ± 0.02
Jet energy scale	0.38 ± 0.02
<i>b</i> -jet-energy scale	0.14 ± 0.02
Jet energy resolution	0.05 ± 0.02
Jet vertex tagging	0.01 ± 0.01
<i>b</i> -tagging	0.04 ± 0.01
Leptons	0.12 ± 0.02
Pile-up	0.06 ± 0.01
Recoil effect	0.37 ± 0.09
Total systematic uncertainty (without recoil)	0.67 ± 0.05
Total systematic uncertainty (with recoil)	0.77 ± 0.06
Total uncertainty (without recoil)	0.70 ± 0.05
Total uncertainty (with recoil)	0.79 ± 0.06

The measured top-quark mass is:

 $m_{\text{top}} = 172.63 \pm 0.20 \text{ (stat)} \pm 0.67 \text{ (syst)} \pm 0.37 \text{ (recoil) GeV}$

■ The systematic uncertainty is dominated by:

• the modelling of the matrix-element to parton-shower matching

- the jet energy scale
- the modelling of colour reconnection

References

[1] Phys. Let. B 761 (2016)

[2] Eur. Phys. J. C 76, 691 (2016)

[3] ATL-PHYS-PUB-2021-042

[4] ATLAS-CONF-2022-058

- Sizable uncertainty due to the modelling of recoil effects in the top-quark decay
- \hookrightarrow Same precision within statistical uncertainty with respect to the 8 TeV measurement in Ref.[1]

Masse und Symmetrien nach Gefördert durch DFG Deutsche Forschungsgemeinschaft

Albert-Ludwigs-Universität Freiburg

September 5, 2022

dimbiniaina.rafanoharana@cern.ch