

Charge Asymmetry in tty Production with the ATLAS Experiment

Amartya Rej, on behalf of the ATLAS collaboration Top 2022

1. Motivation

 \rightarrow tty production is a rare Standard Model (SM) process \rightarrow Gateway to probe top quark-photon interaction

- \rightarrow Interferences among diagrams possible at NLO QCD and also LO QED
 - \rightarrow Never measured before
 - \rightarrow Expected to be sensitive to beyond SM effects^[1]

2. Signal and Backgrounds

Signal: ttγ production (MG5_aMC@NLO+Pythia8, @NLO)

Background processes:

tty decay: Photon from top quark decay products in tt production (MG5_aMC@NLO+Pythia8, @LO with k-factors)

 \rightarrow Indirect measurement via top quark pair charge asymmetry (A_{C}) can probe these interference effects^[2]

- \rightarrow The absolute asymmetry value is estimated to be larger than in tt production
 - \rightarrow Small cross section of the process makes the measurement very challenging

 $\rightarrow A_{C}$ unfolded to fiducial phase space at particle level

Prompt photon backgrounds: V γ , VV γ , singletop (t,s,tW)+ γ , ttV γ (V = W,Z)

Fake photon backgrounds:

Hadronic fakes:

 \rightarrow Jets faking photons or non-prompt photons from jets \rightarrow using data-driven method

Electron fakes:

 \rightarrow Electrons faking photons \rightarrow using data-driven method

Fake-lepton background:

 \rightarrow Leptons from QCD/multijet processes \rightarrow using data-driven method

3. Discrimination of signal and background processes

-4 -3 -2 -1 0 1 2 3 4

 $|y_t| - |y_{\overline{t}}|$

 \rightarrow Separation of signal from backgrounds is done with a neural network (NN) discriminator

Prefit yields

Input variables:	NN architecture	<u>NN output</u>			$O_{\rm NN} < 0.6$	$O_{\rm NN} \ge 0.$
 → Kinematic variables of photon, lepton, jets → Distances and invariant masses of different combination of partilces → Conversion type of photon → b-tagging information 	er FC Layer-1 FC Layer-2 (96)	Sigmoid Output Sigmoid 000 000 000 14000 14000 14000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 12000 100000 100000 100000 1000000000000000000000000000000000000	→ Based on the NN output, two regions are defined: $O_{NN} < 0.6$ $O_{NN} > 0.6$	$ \begin{array}{c} t\bar{t}\gamma \ \text{prod (signal)} \\ t\bar{t}\gamma \ \text{decay} \\ \text{Prompt }\gamma \\ \text{H-fake }\gamma \\ \text{E-fake }\gamma \\ \text{Lepton fake} \\ \hline \text{Total} \\ \hline \end{array} $	6660 ± 350 $14\ 100 \pm 3100$ 6400 ± 2000 3400 ± 1400 6420 ± 860 410 ± 110 $37\ 400 \pm 4500$ 38527	$ \begin{array}{r} \hline 101 \pm 34 \\ 1900 \pm 56 \\ 1300 \pm 40 \\ 790 \pm 36 \\ 1480 \pm 26 \\ 57 \pm 3 \\ 12400 \pm 110 \\ 1376 \end{array} $
4. Top quark reconstruction 5. Profile Likelihood Unfolding						
$ \rightarrow \text{Top quarks are reconstructed using}_{\substack{\text{Kinematic Likelihood Fitter^{[3]}} \\ \rightarrow \text{Likelihood built for top quark pair in single lepton decay channel} \\ \rightarrow \text{Photon is not part of the t\bar{t} system} } \rightarrow \text{A profile likelihood unfolding fit is done to extract asymmetry,} \\ A_{\text{C}} \text{ in a fiducial phase space at particle level}} \\ \rightarrow \text{Both the regions } O_{\text{NN}} < 0.6 \text{ and } O_{\text{NN}} > 0.6 \text{ are used in the fit} \\ \rightarrow \text{The signal strength of bin } \Delta y < 0 (\mu_1) \text{ at} \\ A_{\text{C}} \text{ from the following relation to use it constraints}} \\ \rightarrow \text{Photon is not part of the t\bar{t} system} } \rightarrow \text{Photon is not part of the transform the truth level using its} $					$\langle \sigma(SM) \rangle$ assigned for each $\Delta y < 0 \ (\mu_1)$ at truth μ_1 relation to use it directly s of interest: $\mu_1 = \frac{N_2}{N_1}$	ch bin of truth level evel is replaced by in the likelihood as $ imes \mu_2 imes rac{1-A_c}{1-A_c}$
Post-fit distributions:		υ. Γ	Mossured asymmetry:		Uncertain	v Breakdown
$O_{NN} < 0.6$ $O_{NN} > 0.6$ $O_{NN} > 0.6$ $O_{NN} > 0.6$ $O_{NN} > 0.6$ $O_{NN} < 0.6$ O_{N			$A_{C} = -0.006 + 0.030$ = -0.006 + 0.024(stat) + 0.018(syst)		Total uncertaintyTotal uncertaintyStatistical uncertainMC statistical uncertain MC statistical uncertain $t\bar{t}\gamma$ productionBackground processe	0.030 ty 0.024 tainties 0.004 s 0.008
			SM NLO prediction:		Modelling uncertainties	
$ \begin{array}{c} $			(MadGraph5_aMCAtNLO+Pythia8) A _C = -0.0139 +- 0.001(scale) → The measurement agrees well with the Standard Model prediction		<i>tt</i> γ production model Background modellin Prompt background n	ling0.003g0.002ormalisation0.003
					Experimental uncertainties	
					Jet and b-tagging 0.010 Fake lepton background estimate 0.005 $E_{\rm T}^{\rm miss}$ 0.009 Fake photon background estimates 0.004 Photon 0.003 Other experimental 0.004	

$A_{C} = -0.006 + -0.030$
= -0.006 +- 0.024(stat) +- 0.018(syst
<u>SM NLO prediction:</u> (MadGraph5_aMCAtNLO+Pythia8)

ATLAS-CONF-2022-049

References:

1. J. High Energ. Phys. 2014, 188 (2014) 2. Bergner, J. & Schulze, M. Eur. Phys. J. C (2019) 79: 189 3. NIM A 748 (2014) 18