QCD NLO corrections to ttZ production at the LHC including leptonic decays

Off-shell and parton-shower effects in ttZ signatures

Laura Reina (Florida State University)

15th International Workshop on Top-Quark Physics (TOP 2022) Durham, UK - Sep 4-9, 2022

ttZ at the LHC

- Crucial for a complete measurement of top-quark EW couplings (together with tt̄W, t̄t̄γ, tt̄H, single-top processes, ...)
- > Top-quark couplings @ (HL-)LHC as indirect probe of BSM physics
 - Top-quark, unique probe
 - (HL-)LHC: unprecedented number of top quarks
 - Unrivaled access to top-quark physics till future TeV-energy lepton collider
- Background to ttH
 - > Need accurate modeling of both $t\bar{t}Z$ and $t\bar{t}W$ to measure $t\bar{t}H$ (\rightarrow yt)
- Background to many searches of BSM physics
 - signatures with multi-leptons, b jets, and missing energy

Received focused experimental and theoretical attention

LHC Run2: access to event distributions

20

10

1.2 1 0.8 0.6

Data / SM

CMS [arXiv:1907.11270]

Interest in modelling ttZ leptonic signatures

≥ 6

Niets

See talk by J. van der Linden

ttZ searches in 3I and 4I signatures

ATLAS [arXiv:2103.12603]

Interpreting ttZ measurements ...

Anomalous top couplings

$${\cal L} = ear{u}(p_t) \left[\gamma^\mu (C_{1,V} + \gamma_5 C_{1,A}) + rac{i \sigma^{\mu
u} q_
u}{M_Z} (C_{2,V} + i \gamma_5 C_{2,A})
ight] v(p_{ar{t}}) Z_\mu$$

 $c_{\phi t}$ / Λ^2 [1/TeV²]

-20

Effective operators

$$\begin{aligned} \mathcal{L}_{\text{eff}} &= \mathcal{L}_{\text{SM}} + \left(\frac{1}{\Lambda^2} \sum_i C_i O_i + \text{h.c.} \right) + O(\Lambda^{-4}) \\ O_{uZ} &= -s_W O_{uB} + c_W O_{uW} \\ O_{uB} &= (\bar{q} \sigma^{\mu\nu} u) (\epsilon \varphi^* B_{\mu\nu}) \\ O_{uW} &= (\bar{q} \tau^I \sigma^{\mu\nu} u) (\epsilon \varphi^* W^I_{\mu\nu}) \\ O_{\varphi u} &= (\bar{u} \gamma^{\mu} u) (\varphi^{\dagger} i \overleftrightarrow{D}_{\mu} \varphi) \\ O_{\varphi q}^- &= O^1_{\varphi q} - O^3_{\varphi q} \\ O^1_{\varphi q} &= (\bar{q} \gamma^{\mu} q) (\varphi^{\dagger} i \overleftrightarrow{D}_{\mu} \varphi) \\ O^3_{\varphi q} &= (\bar{q} \tau^I \gamma^{\mu} q) (\varphi^{\dagger} i \overleftrightarrow{D}_{\mu} \varphi) \end{aligned}$$

CMS [arXiv:1907.11270]

... through multiple and more sensitive probes

Global fits of top observables

V Miralles, M. Miralles López, M. Moreno Llacer, A. Peñuelas, M. Perelló, M. Vos [arXiv:2107.13917]

... and through new explorations

See talks by J. Wilson, M. Madigan, J. McFayden

CMS

This work, boosted ttZ/H, 138 fb⁻¹

13 TeV

40

50

Top pair + boosted Z/H

Top+additional leptons

Pointing to the need for precision in modelling the complex signatures from tt+X processes in regions where on-shell calculations may not be accurate enough

ttZ hadronic production: theory overview

• On-shell ttZ: NLO QCD and EW

- Lazopoulos, McElmurry, Melnikov, Petriello, PLB 666 (2008) 62 [0804.2220]
- Kardos, Trocsanyi, Papadopoulos, PRD 85 (2012) 054015 [1111.0610]
- Maltoni, Pagani, Tsinikos, JHEP 02 (2016) 113 [1507.05640]
- Frixione, Hirschi, Pagani, Zaro, JHEP 06 (2015) 184 [1504.03446]

• On-shell ttZ: NNLL resummation

- Broggio, Ferroglia, Ossola, Pecjak, Sameshima, JHEP 04 (2017) 105 [1702.00800]
- Kulesza, Motyka, Schwartländer, Stebel, Theeuwes, Eur. Phys. J. C 79 (2019) 249 [1812.08622]
- Broggio, Ferroglia, Frederix, Pagani, Pecjak, Tsinikos, JHEP 08 (2019) 039 [1907.04343]
- Kulesza, Motyka, Schwartländer, Stebel, Theeuwes, Eur. Phys. J. C 80 (2020) 428 [2001.03031]

• On-shell ttZ: NLO QCD+PS

- Garzelli, Kardos, Papadopoulos, Trocsanyi, PRD 85 (2012) 074022 [1111.1444] (PowHel)
- Garzelli, Kardos, Papadopoulos, Trocsanyi, JHEP 11 (2012) 056 [1208.2665] (PowHel)
- Process available in MG5_aMC@NLO, Sherpa, and Powheg-Box as well.

On-shell ttZ: theory vs exp at a glance

 $\sigma_{tt7}[pb]$

NLO+NNLL: $0.811^{+0.089(+11.0\%)+0.019(+2.4\%)}_{-0.078(-9.6\%)-0.019(-2.4\%)}$

```
ATLAS: 0.99 \pm 0.05 \text{ (stat)} \pm 0.08 \text{ (syst)}
```

CMS: $0.95 \pm 0.05 \text{ (stat)} \pm 0.06 \text{ (syst)}$

```
See talk by J. van der Linden
```

[Broggio et al. arXiv:1907.04343]

[arXiv:2103.12603]

[arXiv:1907.11270]

Moving forward:

- Reduce theoretical systematics
- Describe full events more faithfully
 - Leptonic (and jet) observables
 - Z and tops off-shell

$pp \rightarrow t\overline{t}Z$: modeling events beyond on-shell production

• pp → ttl+l- (l=lepton): NLO QCD + PS

- On-shell top quarks with LO spin-correlations in decay (t \rightarrow b l v) (using NWA)
- Include Ztt off-shell effects and Ztt/ γ tt interference
- Interfaced with PS in the <u>Powheg-Box-V2</u> framework (including on-shell ttZ)

M. Ghezzi, B. Jäger, S. Lopez, L. Reina. D. Wackeroth, [arXiv:2112.08892]]

- <u>Fully off-shell</u> pp $\longrightarrow e^+\nu_e\mu^-\overline{\nu}_\mu b\overline{b}\tau^+\tau^{-:}$ NLO QCD
 - Both double-, single-, and non resonant contributions, interferences, and off-shell effects of top, Z, W, and photon.
 - All heavy resonances described by Breit-Wigner propagators.
 - Comparison with NWA calculation.

See poster by J. Nasufi

G. Bevilacqua, H.B. Hartanto, M. Kraus, J. Nasufi, M. Worek [arXiv:2203.15688]

$pp \rightarrow t\bar{t}l^+l^-$ matched to parton shower

+ NLO QCD + PS

- One-loop matrix elements from NLOX [Honeywell, et al., arXiv:1812.11925]
- EW G_{μ} input scheme (G_{μ} , m_Z , m_W). Other inputs: m_t , Γ_t , Γ_W , Γ_Z
- Studied (μ_R, μ_F) scale dependence wrt to both a fixed and dynamical central scale (7-point variation)

$$\mu_0 = \frac{2m_t + m_Z}{2} \qquad \mu_0 = \frac{M_T(e^+e^-) + M_T(t) + M_T(\bar{t})}{3}$$

- PDF: CT18NLO with $\alpha_s(m_z)=0.118$ ($\alpha_s(\mu)$ in Msbar, 5FS)
- PS: Pythia8
- Specific signature studied: $t\bar{t}e^+e^-$ with $t \rightarrow b \mu \nu_{\mu}$ (with LO spin correlation)
 - $p_T^{e,\mu} > 10 \text{ GeV}, |\eta^{e,\mu}| < 2.5$
 - |M_{ee}- m_Z| < 10 GeV (to mimic exp. fiducial region)

$pp \rightarrow e^+ v_e \mu^- \overline{v}_\mu b \overline{b} \tau^+ \tau^-$ full off-shell description

- NLO QCD corrections obtained in the HELAC-NLO framework [Bevilacqua et al., arXiv:110.1499]
 - One-loop matrix elements with HELAC-1LOOP. Real radiation with HELAC-DIPOLES.
- EW G_{μ} input scheme (G_{μ} , m_Z , m_W). Other inputs: m_t , Γ_W , Γ_Z , Γ_t (LO, NLO, unstable-W and NWA)
- Unstable particles in complex mass scheme.
- Studied PDF dependence. Main results presented for NNPDF3.1
- Studied (μ_R, μ_F) scale dependence wrt to both a fixed and dynamical central scale (7-point variation)
- Specific signature studied: $e^+\nu_e\mu^-\overline{\nu}_\mu b\overline{b}\tau^+\tau^-$
 - $p_T^{-1} > 20 \text{ GeV}, |y_1| < 2.5, \Delta R_{11} > 0.4$
 - $p_T^b > 20 \text{ GeV}, |y_b| < 2.5, \Delta R_{bb} > 0.4$
 - $p_T^{miss} > 40 \text{ GeV}$

$$\mu_0 = \frac{2m_t + m_Z}{2}$$
 $\mu_0 = \frac{H_T}{3}$ for $H_T = \sum_i p_{T,i}$

Theoretical systematic: pp → tte⁺e⁻

NLO QCD corrections are substantial and reduce the overall perturbative uncertainty

$$\sigma_{t\bar{t}e^+e^-}^{\text{LO}} = 15.9^{+5.1}_{-3.6} (15.8^{+5.0}_{-3.5}) \text{ fb}$$

$$\sigma_{t\bar{t}e^+e^-}^{\text{NLO}} = 21.9^{+2.0}_{-2.4} (22.1^{+2.2}_{-2.5}) \text{ fb}$$

Fixed and dynamic scales give very similar results (dyn. scale in parenthesis)

No uniform rescaling: different effects in different phase-space regions

Theoretical systematics: $pp \rightarrow e^+ v_e \mu^- \overline{v}_{\mu} b \overline{b} \tau^+ \tau^-$

Very small residual systematic uncertainty at NLO QCD

$$\begin{split} \sigma^{\rm LO}_{\rm full \ off-shell} &= 80.32^{+25.51(32\%)}_{-18.02(22\%)} \, \left(76.98^{+24.30(32\%)}_{-17.17(22\%)}\right) \, {\rm ab} \\ \sigma^{\rm NLO}_{\rm full \ off-shell} &= 98.88^{+1.22(1\%)}_{-5.68(6\%)} \, \left(97.86^{+1.08(1\%)}_{-6.16(6\%)}\right) \, {\rm ab} \end{split}$$

Dynamic scale preferred over full range of distributions. Not a uniform rescaling.

Small dependence on PDF

$pp \rightarrow t\bar{t}e^+e^-$: partial off-shell and spin-correlation effects + PS

Compare $t\overline{t}Z$ and $t\overline{t}e^+e^$ keeping stable top quarks:

- Effects of off-shell Z
- Effects of e⁺e⁻ spin correlations

10-20% effect in high $p_{\rm T}$ region and in the large absolute-value pseudorapidity difference region

Compare tte⁺e⁻ with and without modeling of top decays (NWA with LO spin correlations).

10-20% visible effects in the tails of distributions

 $pp \rightarrow e^+ v_e \mu^- \overline{v}_\mu b \overline{b} \tau^+ \tau^-$: fully off-shell vs NWA

Very thorough study of modelling effects

Large off-shell effects on total cross section (11%) originating from ttγ* contribution (including Z/γ* interference): studied imposing narrower |M_{ττ}-m_Z| < X (X=25,20,15,10 GeV) cut.</p>

Less evident in ttl⁺l⁻ study because it used X=10 GeV.

- Large effect from including NLO QCD corrections to top-quark decay (9%)
- Sizable off-shell effects in specific fiducial regions of differential distributions even with narrow window cut around the Z peak.

Conclusions

- Enabling the top-physics precision program of the (HL)-LHC is a priority since no other collider will reach the necessary energy to explore it for at least a few decades
- tt+X (X=W, Z, γ, H) processes are challenging but uniquely capable of testing the presence of new physics (NP) effects in top-quark interactions.
 - They are interconnected and may need to be approached as a whole Aim for global fits of classes of signatures
 - NP that modifies top-quark interactions is most likely heavy EFT approach Effects most likely in tails or endpoint of kinematic distributions
 - Off-shell and parton-shower effects can be large in this kinematic regions and need to be included.
- This talk has reviewed progress made with two studies of off-shell effects for the particular case of ttZ production, including leptonic decays, PS, and partial or full off-shell effects, and confirmed the importance of extending the modelling of ttZ events to include them.