Charge asymmetry in top-quark-antiquark pair production at Vs = 13 TeV with the ATLAS detector

FACULTY OF MATHEMATICS, PHYSICS AND INFORMATICS

Comenius University Bratislava

Barbora Eckerova

on behalf of the ATLAS Collaboration

TOP 2022

8 Sep 2022

What is top-quark charge asymmetry?

- In $q\overline{q} \rightarrow t\overline{t}$, top produced preferentially in the direction of q (and vice-versa for \overline{t})
- In pp collisions: momentum imbalance of initial-state q and \overline{q}
- Top quarks more longitudinally boosted than top antiquarks

- At the LHC, $A_{C}^{t\bar{t}}$ strongly diluted by symmetric gg $\rightarrow t\bar{t}$ ($\approx 90\%$)
- Enhancement of $A_c^{t\bar{t}}$ in differential measurements (higher $\beta_z^{t\bar{t}}$ and $m_{t\bar{t}}$), $A_c^{t\bar{t}}$ vs. $m_{t\bar{t}}$ sensitive to BSM contributions

forward-central (charge) asymmetry

 $A_{C}^{t\bar{t}} = \frac{N\left(\Delta|y| > 0\right) - N\left(\Delta|y| < 0\right)}{N\left(\Delta|y| > 0\right) + N\left(\Delta|y| < 0\right)}$

 $\begin{aligned} \Delta |\mathbf{y}| &= |\mathbf{y}_t| - |\mathbf{y}_{\overline{t}}| \\ \Delta |\mathbf{y}| > 0 : \text{top in } \mathbf{q} \text{ direction} \\ \Delta |\mathbf{y}| < 0 : \text{top in } \overline{\mathbf{q}} \text{ direction} \end{aligned}$

In dilepton channel A_c^{Π} defined:

$$A_{\mathrm{C}}^{\ell\bar{\ell}} = \frac{N(\Delta|\eta_{\ell\bar{\ell}}| > 0) - N(\Delta|\eta_{\ell\bar{\ell}}| < 0)}{N(\Delta|\eta_{\ell\bar{\ell}}| > 0) + N(\Delta|\eta_{\ell\bar{\ell}}| < 0)},$$

$$\Delta |\eta_{\ell\bar{\ell}}| = |\eta_{\bar{\ell}}| - |\eta_{\ell}|$$

Event reconstruction & topology

- Full Run2 dataset used (139 fb⁻¹), data from single-lepton & dilepton tt decay channels
- In single-lepton: resolved/boosted 1b-tag excl./2b-tag incl. (4 regions)
- In dilepton: eµ/ee+µµ 1b-tag excl./2b-tag incl. (4 regions)

Analysis strategy: Fully Bayesian Unfolding (FBU) (arXiv: 1201.4612)

- Variable of interest: $\Delta |y| / \Delta |\eta|$ (4 bins)
- Unfold Δ |y| distrib. to parton level to correct for limited acceptance and detector resolution effects
- Bayesian inference applied $p(T|D) \propto \mathcal{L}(D|T) \cdot \pi(T) \rightarrow \text{outcome} = \text{posterior probability distribution}$

Likelihood $\mathcal{L}(D|T)$

T = true distributionD = data

Prior probabilities:

Analysis strategy: Fully Bayesian Unfolding (FBU) (arXiv: 1201.4612)

Results: combination vs single-lepton vs dilepton (arXiv:2208.12095)

- $A_{c}^{t\bar{t}}$ measured inclusively and differentially as a function of $m_{t\bar{t}}$, $\beta_{\tau}^{t\bar{t}}$, $\beta_{\tau}^{t\bar{t}}$ (individually for single-lepton, dilepton channel; also using data from both channels = combination)
- Leptonic A_c^{Π} measured inclusively and differentially as a function of $m_{\Pi} p_{\tau}^{\Pi}, \beta_{\tau}^{\Pi}$

EFT interpretation

Combined constraint from the differential m., measurement > factor 2 stronger than from inclusive measurement (increase in sensitivity with higher m.,)

bound from

inclusive A_c

LHC

results

(linear fit –)

A_c^{tt} complementary to energy asymmetry measurement [Eur. Phys. J. C. 82 (2022) 374]

- Top quark charge asymmetry $A_c^{t\bar{t}}$ measured for the first time in combined single-lepton & dilepton channel
- Sensitivity improved = evidence of $A_{c}^{t\bar{t}}$ in inclusive case: 4.7 σ from zero

- All results compatible with the SM prediction
- Combined results interpreted in the SMEFT framework
 - ➡ Bound on Wilson coefficient C₁⁸ improved
 - ⇒ Derived bounds on many different relevant Wilson coefficients
 - \Rightarrow Common A_c^{tt} and A_F EFT plots = probe different directions in chiral and colour space

FBU: follow up

- Data measured in many independent channels -> likelihood becomes product of likelihoods for each region
- Extended likelihood:

$$\mathcal{L}\left(\{\boldsymbol{D}_{1}\cdots\boldsymbol{D}_{N_{\text{reg}}}\}|\boldsymbol{T}\right) = \int \prod_{i=1}^{N_{\text{reg}}} \mathcal{L}\left(\boldsymbol{D}_{i}|\boldsymbol{T};\boldsymbol{\theta}\right) \cdot \mathcal{N}(\boldsymbol{\theta}) \, \mathrm{d}\boldsymbol{\theta}$$

 Posterior distribution is obtained by sampling likelihood around its minimum using an extended Markov-chain Monte Carlo method (Journal of Machine Learning Research 15 (2014) 1593)

1l reso 1b

Response matrix (illustrative):

FBU: follow up

How posterior distribution of A_{c} is obtained: $p(A_{c}|D) = \int \delta(A_{c} - A_{c}(T))p(T|D, M) dT$

Sampling of likelihood using MCMC method

- Sample ~ pseudo-experiment with specific $\Delta|y|$ spectrum
 - \rightarrow calculate A_c from Δ |y| bins
 - \rightarrow fill histogram with A_c = **posterior probability distribution p(A_c|D)**

```
(T|D) \propto \mathcal{L} (D|T) \cdot \pi (T)
```

Illustration:

Ranking of systematic uncertainties

- **Relative importance** of systematic uncertainties **determined by a ranking** of each nuisance parameter
- Ranked NP fixed to $+/-1\sigma$ (+/-c) around post-marginalization mean value (c = post-marginalization constraint)
- Impact on A_c measurement defined by comparison of nominal A_c result and result with fixed NP

measurement

	Post-marg. (pre-marg.) impact ×100
tī modelling	0.06 (0.08)
<i>tī</i> normalisation (flat prior)	0.02
Background modelling	0.04 (0.05)
Monte Carlo statistics	0.05
Small-R JES	0.03 (0.03)
Small-R JER	0.03 (0.03)
Large-R JES, JER	0.01 (0.01)
Leptons, E_T^{miss}	0.02 (0.03)
b-tagging eff.	0.01 (0.01)
Pile-up, JVT, luminosity	0.01 (0.01)
Statistical uncertainty	0.10
Total uncertainty	0.15

Event selection: single-lepton

Resolved & boosted:

- Exactly 1 isolated e/μ with $p_T > 28$ GeV
- e+jets: E_{T}^{miss} > 30 GeV, M_{T}^{W} > 30 GeV; µ+jets: M_{T}^{W} + E_{T}^{miss} > 60 GeV
- \geq 1 b-tagged small-R (R = 0.4) jet (MV2c10 77% eff. WP)

Boosted:

- ≥ 1 large-R (R = 1.0)
 top-tagged jet with p_T> 350
 GeV and |η| < 2, opposite to lepton
- ≥1 small-R jet close to lepton (∆R(jet,lepton) < 1.5)
- m_{tt} > 500 GeV

ATLAS

Resolved:

- \geq 4 small-R jets, p_T > 25 GeV
- Veto boosted events
- BDT used for correct jet-to-parton assignment (distinguish signal from bckg)
- BDT discriminant requirements (~ 75% eff.)

Event selection: dilepton

Common:

- 2 opposite charge leptons with $p_{T} > 28$ (25) GeV (one matched to trigger lepton)
- \geq 2 small-R jets, p_T > 25 GeV \bullet
- \geq 1 b-tagged small-R (R = 0.4) jet (MV2c10 77% eff. WP)
- tt reconstructed by the Neutrino Weighting

 $ee+\mu\mu$ channel:

- Z veto: $|m_{II} m_{Z}| > 10 \text{ GeV}$ $E_{T}^{\text{miss}} > 60 (30) \text{ GeV for 1b (2b) -> reduce Z+jets}$
- m_{μ} > 15 GeV in 1b region -> suppress low mass resonances

EFT operators

- $A_c^{t\bar{t}}$ sensitive to 4-quark EFT operators (qqtt) and 1 tensor EFT operator (ttg)
- 4-quark operators:

LL chiral structure:

$$O_{Qq}^{1,8} = (\bar{Q}\gamma_{\mu}T^{A}Q)(\bar{q}_{i}\gamma^{\mu}T^{A}q_{i}),$$

$$O_{Qq}^{3,8} = (\bar{Q}\gamma_{\mu}T^{A}\tau^{I}Q)(\bar{q}_{i}\gamma^{\mu}T^{A}\tau^{I}q_{i}),$$

$$O_{tu}^{8} = (\bar{t}\gamma_{\mu}T^{A}t)(\bar{u}_{i}\gamma^{\mu}T^{A}u_{i})$$

$$O_{td}^{8} = (\bar{t}\gamma^{\mu}T^{A}t)(\bar{d}_{i}\gamma_{\mu}T^{A}d_{i})$$

RR chiral structure: $O_{Qq}^{1,1} = (\bar{Q}\gamma_{\mu}Q)(\bar{q}_{i}\gamma^{\mu}q_{i}),$ $O_{Qq}^{3,1} = (\bar{Q}\gamma_{\mu}\tau^{I}Q)(\bar{q}_{i}\gamma^{\mu}\tau^{I}q_{i}),$ $O_{tu}^{1} = (\bar{t}\gamma_{\mu}t)(\bar{u}_{i}\gamma^{\mu}u_{i})$ $O_{td}^{1} = (\bar{t}\gamma_{\mu}t)(\bar{d}_{i}\gamma^{\mu}d_{i}).$

• 1 tensor operator: $O_{tG} = (\bar{t}\sigma^{\mu\nu}T^A t)\tilde{\varphi}G^A_{\mu\nu}$

- Q = left-handed quark doublet (3. generation)
- q_i = left-handed quark doublet (1./2. generation)
- u_i, d_i = right-handed singlet (1./2. generation)
- t = right-handed top quark

LR chiral structure: $O_{Qu}^{8} = (\bar{Q}\gamma_{\mu}T^{A}Q)(\bar{u}_{i}\gamma^{\mu}T^{A}u_{i})$ $O_{Qd}^{8} = (\bar{Q}\gamma_{\mu}T^{A}Q)(\bar{d}_{i}\gamma^{\mu}T^{A}d_{i})$ $O_{tq}^{8} = (\bar{t}\gamma^{\mu}T^{A}t)(\bar{q}_{i}\gamma_{\mu}T^{A}q_{i})$ $O_{Qu}^{1} = (\bar{Q}\gamma_{\mu}Q)(\bar{u}_{i}\gamma^{\mu}u_{i})$ $O_{Qd}^{1} = (\bar{Q}\gamma_{\mu}Q)(\bar{d}_{i}\gamma^{\mu}d_{i})$ $O_{tq}^{1} = (\bar{t}\gamma^{\mu}t)(\bar{q}_{i}\gamma_{\mu}q_{i}).$

EFT operators

- $A_c^{t\bar{t}}$ sensitive to 4-quark EFT operators (qqtt),1 tensor EFT operator (ttg)
- 4-quark operators:

L chiral structure:

$$O_{Qq}^{1,8} = (\bar{Q}\gamma_{\mu}T^{A}Q)(\bar{q}_{i}\gamma^{\mu}T^{A}q_{i}),$$

$$O_{Qq}^{3,8} = (\bar{Q}\gamma_{\mu}T^{A}\tau^{I}Q)(\bar{q}_{i}\gamma^{\mu}T^{A}\tau^{I}q_{i}),$$

$$O_{tu}^{8} = (\bar{t}\gamma_{\mu}T^{A}t)(\bar{u}_{i}\gamma^{\mu}T^{A}u_{i})$$

$$O_{td}^{8} = (\bar{t}\gamma^{\mu}T^{A}t)(\bar{d}_{i}\gamma_{\mu}T^{A}d_{i})$$

RR chiral structure:

$$\begin{split} O^{1,1}_{Qq} &= (\bar{Q}\gamma_{\mu}Q)(\bar{q}_{i}\gamma^{\mu}q_{i}), \\ O^{3,1}_{Qq} &= (\bar{Q}\gamma_{\mu}\tau^{I}Q)(\bar{q}_{i}\gamma^{\mu}\tau^{I}q_{i}), \\ O^{1}_{tu} &= (\bar{t}\gamma_{\mu}t)(\bar{u}_{i}\gamma^{\mu}u_{i}) \\ O^{1}_{td} &= (\bar{t}\gamma_{\mu}t)(\bar{d}_{i}\gamma^{\mu}d_{i}) \,. \end{split}$$

LR chiral structure: $O_{Qu}^{8} = (\bar{Q}\gamma_{\mu}T^{A}Q)(\bar{u}_{i}\gamma^{\mu}T^{A}u_{i})$ $O_{Qd}^{8} = (\bar{Q}\gamma_{\mu}T^{A}Q)(\bar{d}_{i}\gamma^{\mu}T^{A}d_{i})$ $O_{tq}^{8} = (\bar{t}\gamma^{\mu}T^{A}t)(\bar{q}_{i}\gamma_{\mu}T^{A}q_{i})$ $O_{Qu}^{1} = (\bar{Q}\gamma_{\mu}Q)(\bar{u}_{i}\gamma^{\mu}u_{i})$ $O_{Qd}^{1} = (\bar{Q}\gamma_{\mu}Q)(\bar{d}_{i}\gamma^{\mu}d_{i})$ $O_{tq}^{1} = (\bar{t}\gamma^{\mu}t)(\bar{q}_{i}\gamma_{\mu}q_{i}).$

1 tensor operator:

 $O_{tG} = (\bar{t}\sigma^{\mu\nu}T^A t)\tilde{\varphi}G^A_{\mu\nu}$

