A look into the quantum supremacy experiment

Benjamin Villalonga (Durham, 08-27-2020)

PART 1 Overview

The promise of quantum computers

What is quantum supremacy?

Proof of principle that quantum computers work

Problem that is:

- Hard for a classical computer
- Easy for a quantum computer
- Correct solution can be "verified"

Does it have to be useful? NO

The problem: Random circuit sampling (Sergio Boixo)

Sergio Boixo^{1*}, Sergei V. Isakov², Vadim N. Smelyanskiy¹, Ryan Babbush¹, Nan Ding¹, Zhang Jiang^{3,4}, Michael J. Bremner⁵, John M. Martinis^{6,7} and Hartmut Neven¹

Generating a random quantum circuit

Sampling from a random quantum circuit | Verifying

Brief hardware overview (John Martinis)

The need for many qubits, depth, connectivity, and fidelity

Forward-compatible with surface code

PART 2 Simulations

The role of classical simulations

In both cases we have to compute p's

Tensor networks: a framework for (most) simulators

Quantum circuits and tensor networks

Types of simulators (competitors / verifiers)

Schroedinger

Typical time evolution **Advantages:**

- Best for deep circuits
- Get all amplitudes at once
- No need to find contraction ordering

Disadvantages:

- Need to store the full wave function
- Time and memory exponential in #qubits

Feynman

Contract in exotic ways...

Advantages:

- Best for shallow circuits
- Lower memory
- Cost proportional to F

Disadvantages:

- One amplitude at a time
- Time and memory "exponential" in #qubits *and* depth
- Finding best contraction is NP-hard

Shroedinger-Feynman

Hybrid (many small evolutions) Advantages:

- Best for moderate depth
- Get all amplitudes at once
- Lower memory
- Cost proportional to F

Disadvantages:

- Time and memory "exponential" in #qubits *and* depth

The effort of simulating quantum circuits

Contraction

Towards more efficient sampling

On Summit (GPUs) we run up to 121 qubit shallow QCs (70-90% efficiency)

Villalonga et al., 2019

Rejection sampling

(Markov, Fatima, Isakov, Boixo, 2018)

- Compute B amplitudes, {s}:
 - 01001110
 - 10001100

...

- Accept bitstring with probability min(1, **p(s)** M / N), where N = 2ⁿ.
- Approx. 1 sample per 10 amplitudes
 1 batch.

Low fidelity sampling

Sampling correctly a fraction **F** of the time yields fidelity **F** (linear speedup)

Reminiscent of: Markov, 2018

Post-experiment follow-up

Leveraging Secondary Storage to Simulate Deep 54-qubit Sycamore Circuits

Edwin Pednault*1, John A. Gunnels¹, Giacomo Nannicini¹, Lior Horesh¹, and Robert Wisnieff¹

Use the many PB disk!

How hard are simulations?

Originally thousands of years (hundreds)

Weeks? days? vs. 200s ~10 MW vs. ~10 KW

Hyper-optimized tensor network contraction

Johnnie Gray¹ and Stefanos Kourtis^{1, 2, 3}

¹Blackett Laboratory, Imperial College London, London SW7 2AZ, United Kingdom
 ²Department of Physics, Boston University, Boston, MA, 02215, USA
 ³Institut quantique & Département de physique, Université de Sherbrooke, Québec J1K 2R1, Canada (Dated: February 7, 2020)

What limits the simulation of quantum computers?

Yiqing Zhou,^{1, 2} E. Miles Stoudenmire,² and Xavier Waintal³ ¹Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA ²Center for Computational Quantum Physics, Flatiron Institute, New York, NY 10010, USA ³Univ. Grenoble Alpes, CEA, IRIG-Pheliqs, 38054 Grenoble, France (Dated: February 2020)

What's next?

 02
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2
 2

Long term: error correction

Near term: NISQ era just got unlocked! Useful supremacy: optimization, quantum chemistry, certified random number generation, ...

Fowler et al., 2012