

FCC-hh: experimental challenges

Monica D'Onofrio
University of Liverpool

FCC UK workshop 11/9/2020

Outline

- The FCC-hh clearly has an enormous potential 100 TeV c.o.m. energy, huge (+30/ab) datasets
- A detector at the FCC will have to operate in challenging conditions, i.e. high (~1K) pile-up
- Extreme granularity, excellent energy-momentum resolution beyond the LHC detectors, together with novel algorithms will be needed to achieve optimal object reconstruction and identification

In this talk, I will present highlights of some interesting results depending substantially on experimental conditions and detector challenges and some current standings on detector ideas.

Lot of material available - used for this talk:

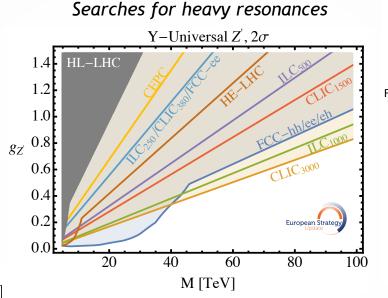
FCC Volume 1 and references + older or newer documents: https://arxiv.org/pdf/1606.00947.pdf, CERN-ACC-

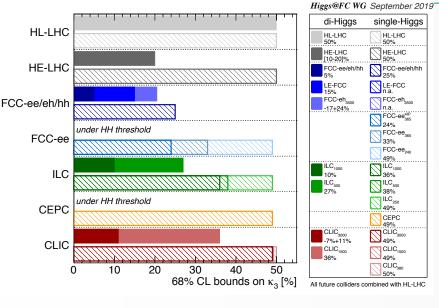
2018 -0056.pdf, Eur. Phys. J. C (2019) 79:569, CERN-FCC-PHYS-2020-0004

European Strategy Briefing book: https://arxiv.org/abs/1910.11775

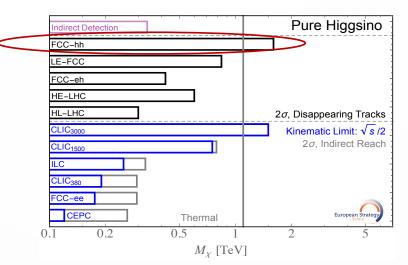
These two in particular present comparative studies under different hypothesis for detector performance on searches for high mass resonances developed after the European Strategy

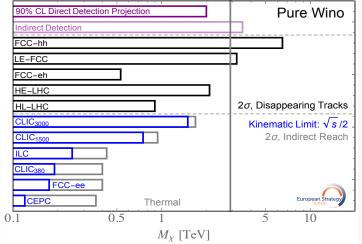

Disclaimers: (1) only a few examples based on searches which I know best (2) I have not worked directly on detector studies at FCC-hh

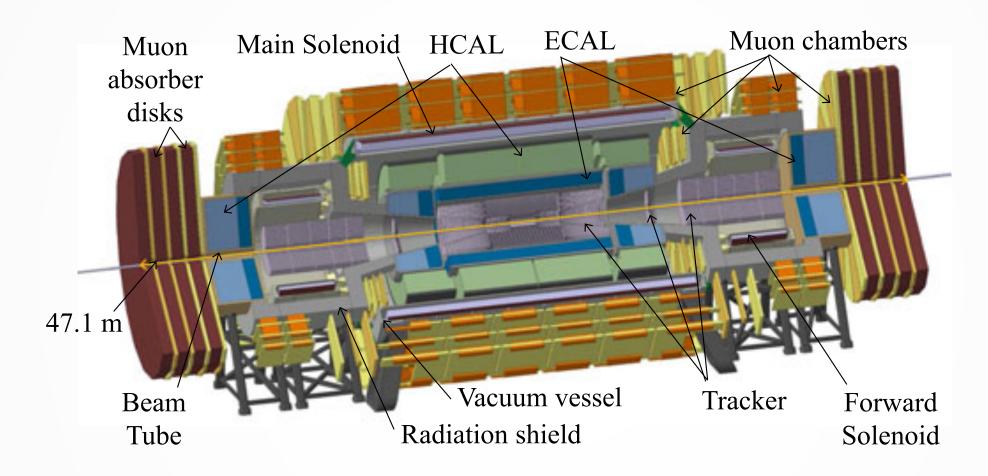

Physics potential of FCC-hh: a few examples


Di-higgs

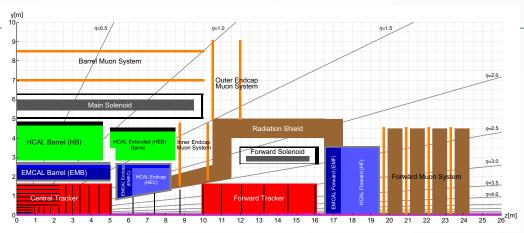
BSM searches, higgs measurements ..

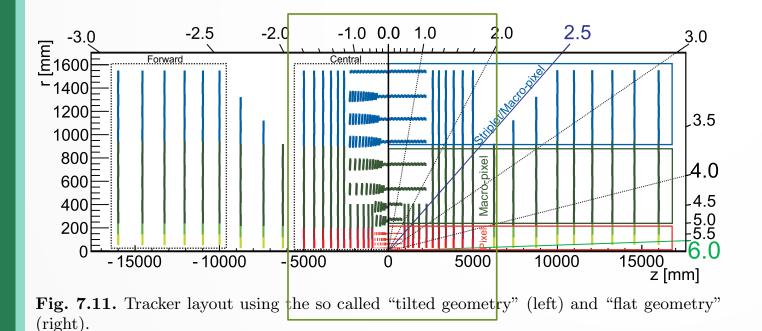

All are examples of how FCC-hh can hine as Strategy





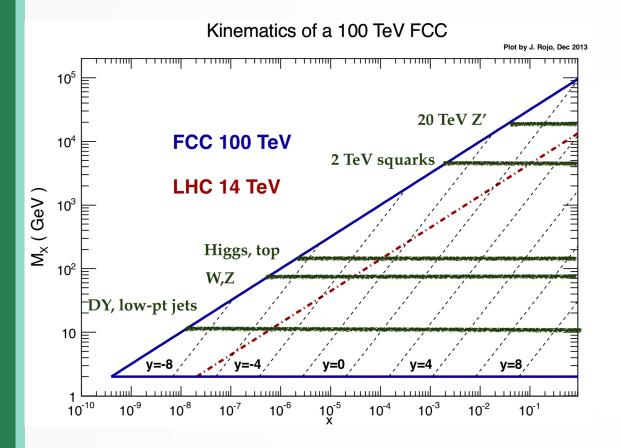
dark matter wino/higgsino models

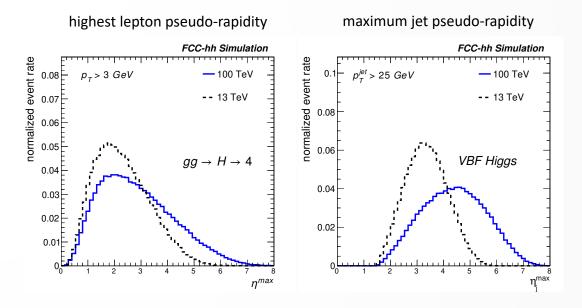

A possible layout of a detector for the FCC-hh


- Assume cavern length of 66 m
- In this case, 4-T main solenoid and forward solenoids
 - As for CMS, central tracker and calorimeters placed in the bore of the main solenoid.

From the FCC-hh CDR

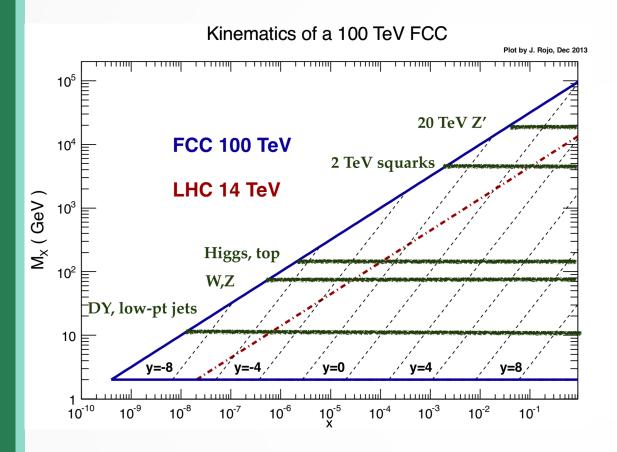
- https://link.springer.com/article/10.1140/epjst/e2019-900087-0
- Conceptual designs so far based on current detectors of course. In some cases, various options are explored
- Tracker: two proposed layouts
 - Flat geometry
 - Tilted geometry 50% less material budget to be compromised with high rad deposits


total silicon surface amounts to 430 m² for the flat geometry and 391 m² for the tilted geometry.


A central tracker would cover $|\eta|$ < 2.5

A forward tracker would cover the region at higher rapidity, exploiting the presence of a forward solenoid (inspired by ALICE and LHCb spectrometers)

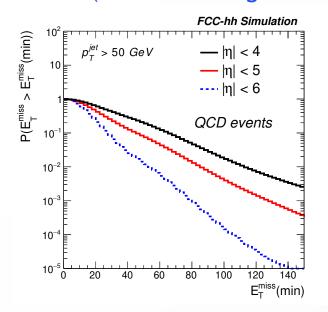
Kinematic coverage and geometrical acceptance

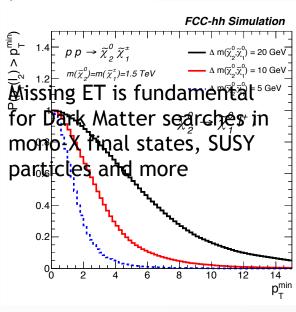

- Processes occurring at a given Q² = M_X will be produced on average from collisions that are more asymmetric at 100 TeV compared to 14 TeV → particles will be produced more forward
- Example for ggF and VBF Higgs production

- Studies from M. Mangano, C. Helsen, M Selvaggi
 - **CERN-FCC-PHYS-2020-0004**

- → Set stringent requirements on detector acceptance
- → Forward detectors will have to operate in extreme environment (large radiations, high pile-up)

Kinematic coverage and geometrical acceptance

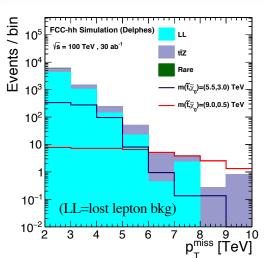


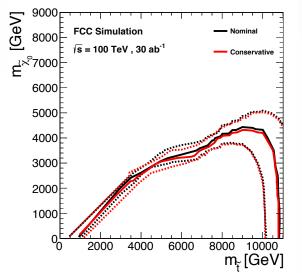

Studies from M. Mangano, C. Helsen, M Selvaggi

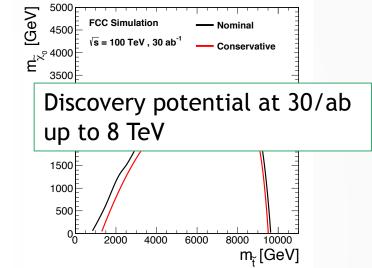
CERN-FCC-PHYS-2020-0004

Processes occurring at a given Q² = M_X will be produced on average from collisions that are more asymmetric at 100 TeV compared to 14 TeV → particles will be produced more forward

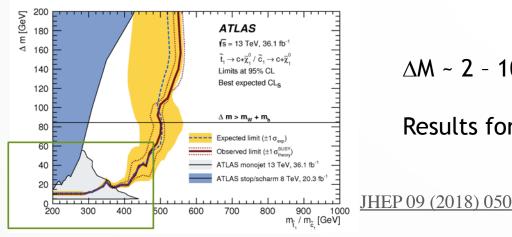
Assuming that forward detectors <u>can</u> operate in extreme environment, this could be an advantage for Missing ET resolution (better coverage in eta)




Probability of reconstructing E_{miss} greater than ET_{miss} (min) in di-jet QCD events


Examples of prospects relying on MET: top squarks

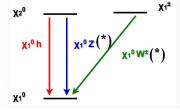
Analyses for large and medium ΔM (stop, N1): ETMiss could be as high as 5-10 TeV

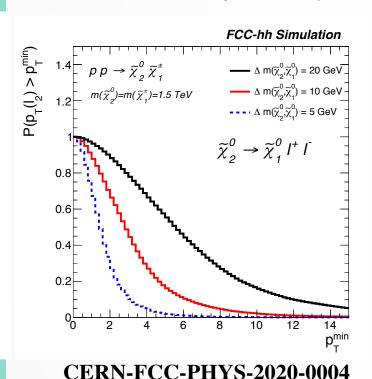


Monojet analyses (jet+MET) sensitive to compressed scenarios, small $\Delta M = m_{stop} - m_{LSP}$:

ΔM ~ 2 - 10 GeV

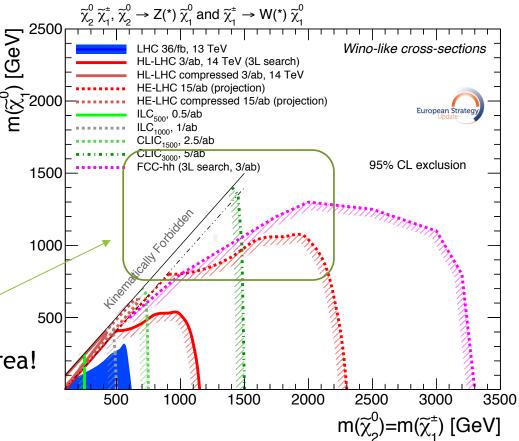
Results for FCC-hh are projections


with **ColliderReachTool**: HL-LHC \rightarrow 0.95 TeV; [confirmed exp.] $HE-LHC \rightarrow 2 \text{ TeV};$ FCC-hh → 5 TeV


- → recoil-jet pt thresholds can be adjusted
- → Depends on capability of reconstructing real MET in high-pT tails 11/9/20

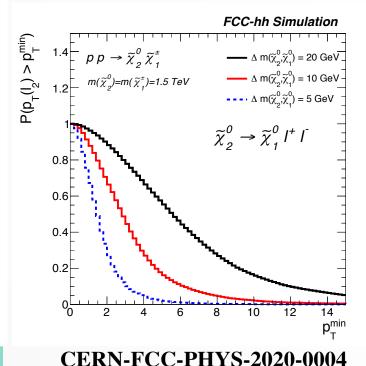
Lepton pT resolution

- Low momentum objects are fundamental for several SM and BSM processes
 - Precision measurements: e.g. Higgs in 4 leptons (one of them very soft, pT ~ 5 GeV)
 - ► Searches: electro-weakly produced SUSY particles: $\chi^{\pm}_1 \chi^0_2 = \text{NSLP}_1 m(\chi^{\pm}_1) = m(\chi^0_2)$
 - in compressed models, W and Z might be off-shell → soft leptons



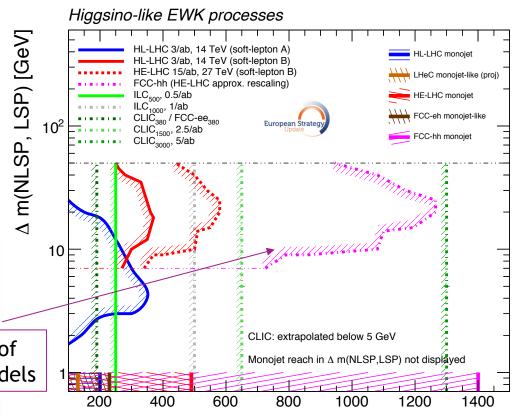
pT min must be kept as low as possible

Target: ~ 4 GeV for electrons ~ 6-7 GeV for muons


Fundamental to cover this area!

Lepton pT resolution

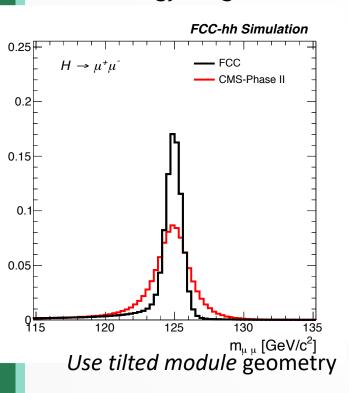
- Low momentum objects are fundamental for several SM and BSM processes
 - Precision measurements: Higgs in 4 leptons (one of them very soft, pT ~ 5 GeV)
 - Searches: electro-weakly produced SUSY particles:
- $\chi^{\pm}_{1}\chi^{0}_{2} = \text{NSLP}_{,} m(\chi^{\pm}_{1}) = m(\chi^{0}_{2})$
- X10 h X10 Z (*)

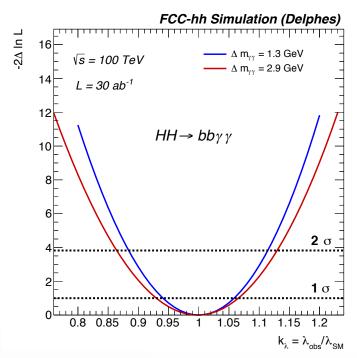

- in compressed models, W and Z might be off-shell
- Estimate probability of having pT(l) above a threshold

pT min must be kept as low as possible

Target: ~ 4 GeV for electrons ~ 6-7 GeV for muons

Needed assumption for validity of projections for higgsino-like models




Impact of e/γ and μ resolutions: higgs

- For higgs rare decay processes (e.g. $\mu\mu$, $Z\gamma$) or di-higgs studies, maximizing the performance requires minimizing the impact of multiple-scattering i.e. minimizing material budget
 - Ideally, track momentum resolution should be $\sigma(p)/p \approx 0.5\%$ at $\eta \approx 0$, corresponding to about $0.2X_0$ radiation length of material for the entire tracking volume.

For the HH \rightarrow bb γγ decay mode, excellent energy photon resolution is needed in the E = 50 - 100 GeV

energy range \rightarrow translates into stringent requirements on stochastic and noise terms

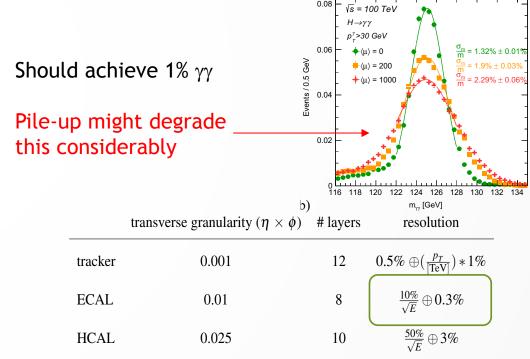
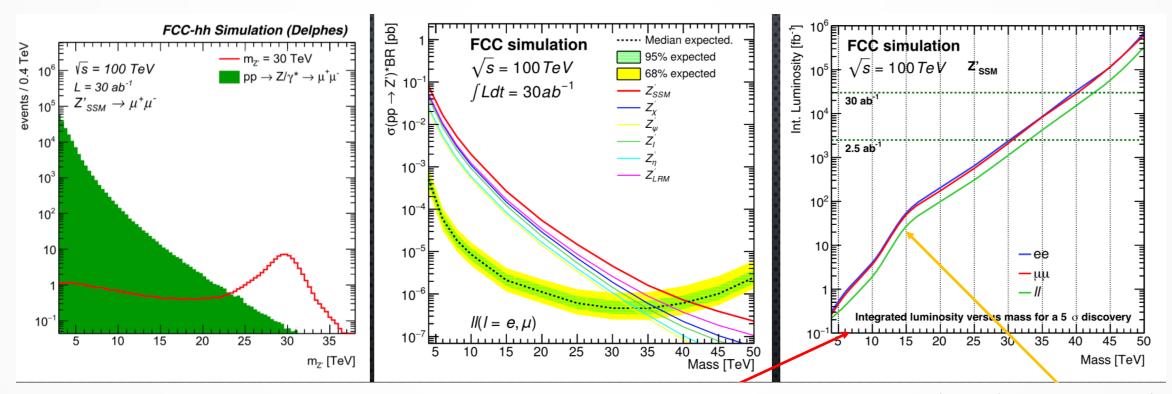
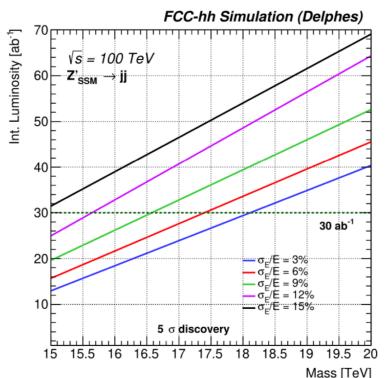



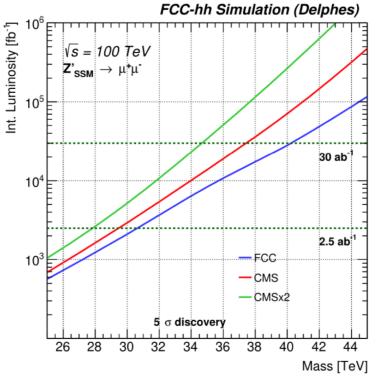
Table 1: Requirements for tracking and calorimetry for the FCC-hh detector at $|\eta| \approx 0$.

Impact of jets, e/γ , μ , τ at high pT: resonances

- For searches for heavy resonance, good reconstruction efficiency for high pT objects is fundamental
- Dilepton (ee, $\mu\mu$) resonance searches:

HL-LHC reach @ 6.4 TeV


Slope changes as search becomes almost BG free


Effects of design on projections

LAr technology envisaged for ECAL

Efficiency assumptions for these studies

	Electrons (%)	Muons (%)	Photons (%)
FCC-hh	99	95	95
HE-LHC	95	95	95

Eur. Phys. J. C (2019) 79:569

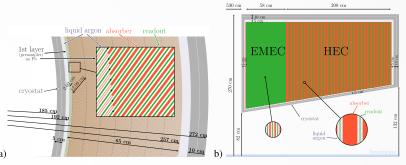


Fig. 7.16. (a) LAr barrel ECAL geometry and (b) LAr endcap calorimeter geometry

Different assumption on calorimeter resolution and muon resolution have a huge impact on the discovery reach as expected. Best assumptions:

ECAL and **HCAL**:

$$\sigma_E/E~pprox 0.3\%$$
 and $\sigma_E/E~pprox 3\%$

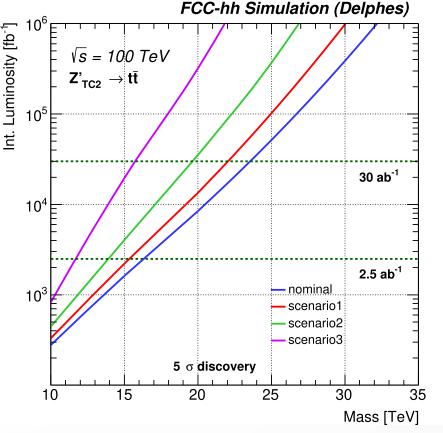
Muon resolution:

$$|\sigma_p/p| \approx 5\%$$
 at $p_{\rm T} = 20~{\rm TeV}$

b-tagging requirement

- Capability of efficiently identify b-jets is fundamental
- Various scenarios compared in the context of a search for Z' into a top pair:

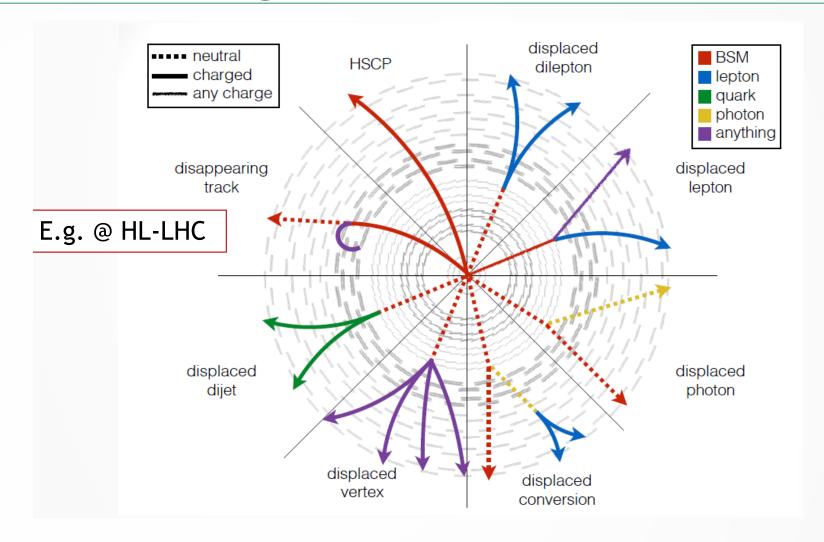
■ 1,2 and 3 corresponding to reduction in efficiency respectively by a factor 25%, 33% and 50% of


the nominal efficiency

Nominal assumptions:

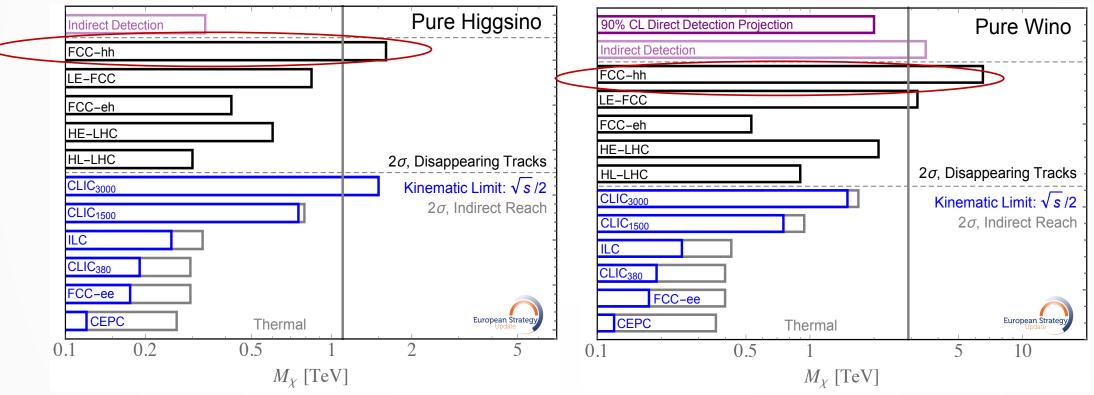
- B-tag Efficiency $(1 p_T \text{ [TeV]/15}) \cdot 85\%$
- mis-identification efficiency:

Light (b-tag)	Charm (b-tag)	QCD (τ-tag)
$(1 - p_{\rm T} [{\rm TeV}]/15) \cdot 1\%$	$(1 - p_{\rm T} [{\rm TeV}]/15) \cdot 5\%$	$(8/9 - p_{\rm T} [\text{TeV}]/30) \cdot 1\%$


Degrading the performance by 50% increases the needed lumi for a discovery by more than an order of magnitude regardless the mass!

Eur. Phys. J. C (2019) 79:569

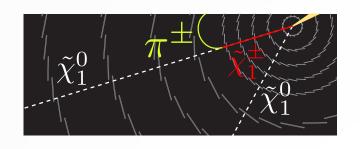
Long lived particles: a challenge


- Several new physics models predict existence of long-lived particles:
 - Small couplings
 - Small mass-splittings
- Phenomenology depends on lifetime and decays (hadrons, charged leptons, neutrals)

Detailed studies are very difficult without a proper detector layout - even HL-LHC projections need 'assumptions' e.g. on the capability of reducing the background to zero.

Example: disappearing track

- Disappearing track signatures appear in a variety of models for Dark Matter:
 - SUSY ...
 - Thermal freeze-out mechanism: massive particle with EW gauge interactions only. Spin-1/2 particles transforming as doublets or triplets under SU(2) symmetry, usually referred to as Higgsino and Wino



FCC-hh can conclusively test the hypothesis of thermal DM in both scenarios - but what are the assumptions?

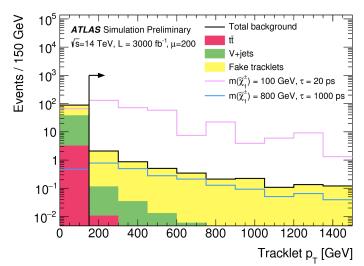
ATL-PHYS-PUB-2018-031

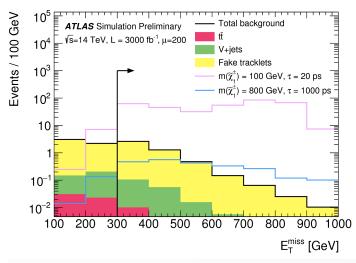
Disappearing track signatures @ HL-LHC

 $\begin{array}{c}
 j \\
 \tilde{\chi}_{1}^{0} \\
 \tilde{\chi}_{1}^{0} \\
 \tilde{\chi}_{1}^{0} \\
 \tilde{\chi}_{1}^{0}
\end{array}$ $\pi^{\pm} \quad \pi^{\pm}$

Very challenging with high pile-up → not shown in this sketch

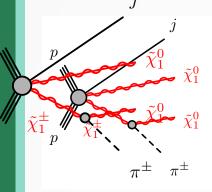
A disappearing track occurs when the decay products of a charged particle, like a supersymmetric chargino, are not detected (disappear) because they either interact only weakly or have soft momenta and hence are not reconstructed.

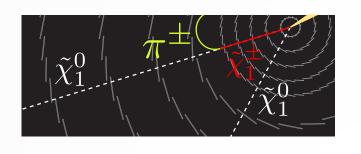

Variable	SR Selection
Lepton veto p_T [GeV]	>20
$\min\{\Delta\phi(\mathrm{jet}_{1-4},E_{\mathrm{T}}^{\mathrm{miss}})\}$	> 1
$E_{ m T}^{ m miss}$ [GeV]	> 300
Leading jet p_T [GeV]	> 300
Leading tracklet p_T [GeV]	> 150
$\Delta \phi(E_{\mathrm{T}}^{\mathrm{miss}},\mathrm{trk})$	< 0.5


Tracklet reconstruction:

- "standard" tracks are reconstructed:
- track reconstruction is then rerun with looser criteria
 → >= 4 pixel hits using only input hits not associated with tracks
- Tracklets are then extrapolated to the strip detectors
- $p_T > 5 \text{ GeV and } |\eta| < 2.2$

Event selection:


- Use boosts from ISR jets to trigger events
- Lepton veto and kinematic selections applied to reduce background



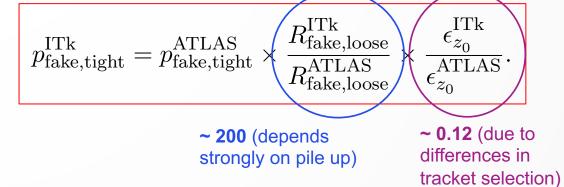
Disappearing track signatures @ HL-LHC

ATL-PHYS-PUB-2018-031

Very challenging with high pile-up → not shown in this sketch

A disappearing track occurs when the decay products of a charged particle, like a supersymmetric chargino, are not detected (disappear) because they either interact only weakly or have soft momenta and hence are not reconstructed.

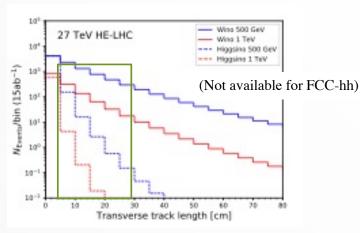
Two sources of background contributions:

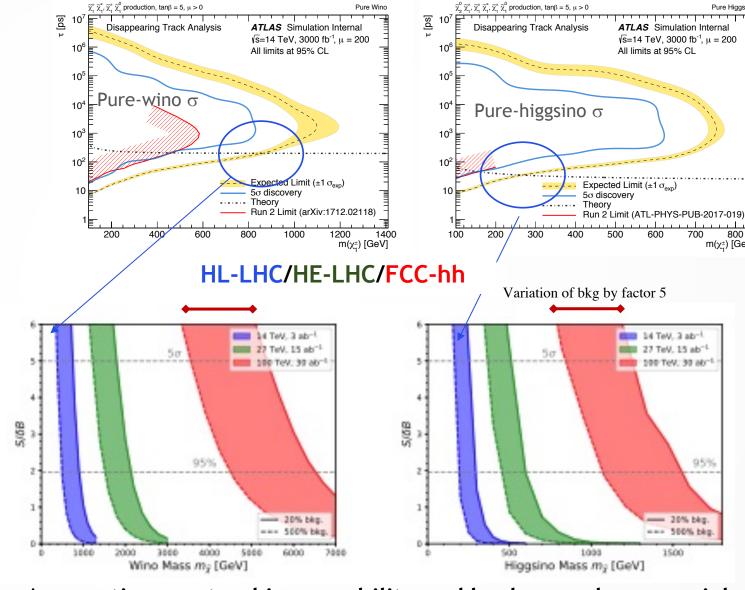

 SM particles that are reconstructed as tracklets, i.e. hadrons scattering in detector material or electrons undergoing bremsstrahlung

1) use samples of single e or π passing through the current ATLAS detector layout to estimate the probability that an isolated e or hadron leave a disappearing track 2) Scale it to account for ratio of material in the current ATLAS inner detector and the upgraded inner tracker

- Events which contain fake tracklets:
 - from $Z \rightarrow vv$ or $W \rightarrow Iv$ where lepton is lost
 - Scaled by the expected fake tracklet probability
 - Fakes are also the largest source of uncertainties (~30% of total background)

Results at HL-LHC ...


... and projections to FCC-hh [extrapolated by theorists]


Section 4.1.2 of arxiv:1812.07831

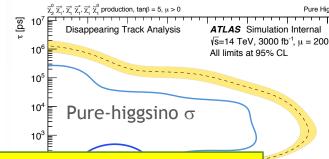
transverse charged track length must be in specific ranges to retain sensitivity

12 < d < 30 cm

@ FCC: p_T track in 1-1.4 TeV range

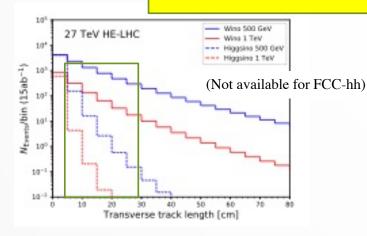

Assumptions on tracking capability and background are crucial

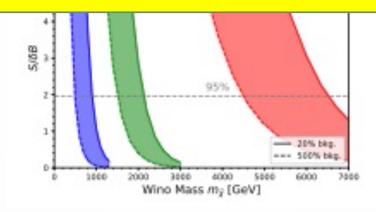

S-PUB-2017-019)

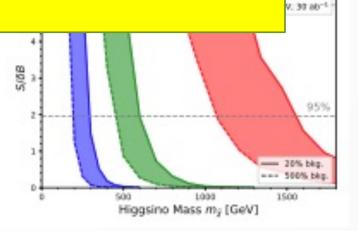

3 ab-l

15 ab⁻¹

800 m(χ₄) [GeV]

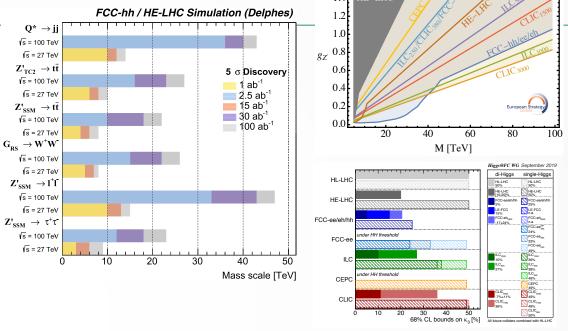



... and projecting [extrapolated b


Section 4.1.2 of arx

transverse charge specific ranges to

12 < d < 30 cm @ FCC: p_T track in This as other analyses targeting long-lived particles (e.g. exploiting displaced vertex, displaced jets, delayed photons) could be used as benchmarks to evaluate the impact of choices on techniques to be pursued



Conclusions

- The potential of the FCC-hh is enormous:
 - New possible heavy particles could be directly discovered if they have masses up to 20-40 TeV
 - Huge potential also from indirect searches [not discussed here]
 - Highest reach in sensitivity also for di-higgs studies, dark matter searches and more
 - E.g. can conclusively test the hypothesis of thermal DM in both scenarios

- Extreme granularity, excellent energy-momentum resolution beyond the LHC detectors, together with novel algorithms [see also back-up] will be needed to achieve optimal object reconstruction and identification
- Comparative studies considering different hypotheses for detector performance have been made using some searches (especially for high mass resonances) as benchmarks
 - more should/could be done for interesting and challenging scenarios → useful exercise to inform about detector layout and techniques to be considered and further developed.
 - Obviously, developments on other fronts such as theoretical calculations, modeling of backgrounds, PDFs, would also be fundamental and have not been discussed here.
- Additional documents prepared by FCC experts are available with links to software repositories including benchmark analyses, DELPHES cards etc on-going work in preparation for more realistic detector response.

Y-Universal Z', 2σ

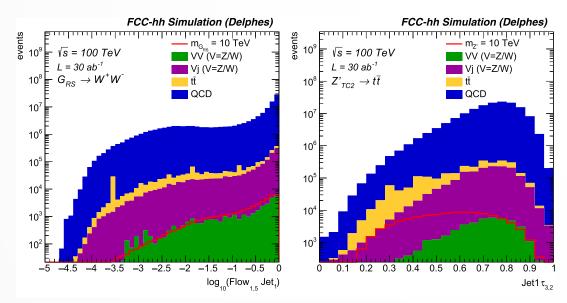
Parameters and cross-sections

Parameters

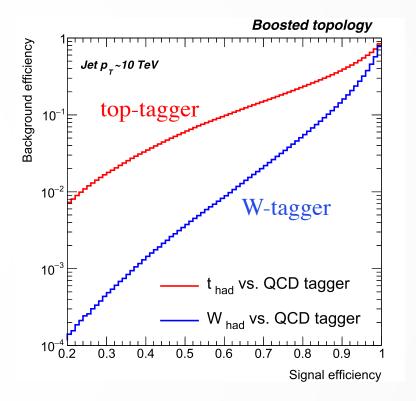
Parameter	Unit	LHC	HL-LHC	HE-LHC	FCC-hh
$E_{ m cm}$	TeV	14	14	27	100
Circumference	km	26.7	26.7	26.7	97.8
Peak \mathcal{L} , nominal (ultimate)	$10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	1(2)	5 (7.5)	16	30
Bunch spacing	ns	25	25	25	25
Number of bunches		2808	2760	2808	10 600
Goal $\int \mathcal{L}$	ab^{-1}	0.3	3	10	30
$\sigma_{\rm inel}[340]$	mb	80	80	86	103
$\sigma_{ m tot}[340]$	mb	108	108	120	150
BC rate	MHz	31.6	31.0	31.6	32.5
Peak pp collision rate	GHz	0.8	4	14	31
Peak av. PU events/BC, nom-		25	130 (200)	435	950
inal (ultimate)		(50)			

Parameter	Unit	LHC	HL-LHC	HE-LHC	FCC-hh
bb cross-section	mb	0.5	0.5	1	2.5
$b\overline{b}$ rate	MHz	5	25	250	750
$ b\overline{b} p_T^b > 30 \text{GeV/c}$ cross-	$\mu \mathrm{b}$	1.6	1.6	4.3	28
section					
$ b\overline{b} p_T^b > 30 \mathrm{GeV/c}$ rate	MHz	0.02	0.08	1	8
$ \text{Jets } p_T^{\text{jet}}> 50\text{GeV/c cross-}$	$\mu \mathrm{b}$	21	21	56	300
section [340]					
Jets $p_T^{\text{jet}} > 50 \text{GeV/c}$ rate	MHz	0.2	1.1	14	90
$W^+ + W^-$ cross-section [12]	$\mu \mathrm{b}$	0.2	0.2	0.4	1.3
$W^+ + W^-$ rate	kHz	2	10	100	390
$W^+ \rightarrow l + \nu$ cross-section [12]	nb	12	12	23	77
$W^+ \rightarrow l + \nu$ rate	kHz	0.12	0.6	5.8	23
$W^- \rightarrow l + \nu$ cross-section [12]	nb	9	9	18	63
$W^- \rightarrow l + \nu$ rate	kHz	0.1	0.5	4.5	19
Z cross-section [12]	nb	60	60	100	400
Z rate	kHz	0.6	3	25	120
$Z \rightarrow ll \text{ cross-section } [12]$	nb	2	2	4	14
$Z \to ll$ rate	kHz	0.02	0.1	1	4.2
t-t cross-section [12]	nb	1	1	4	35
t-t rate	kHz	0.01	0.05	1	11

High pT jets and boosted objects


Hadronic resonance with sub-structures used to study taggers for boosted objects:

Heavy particles can decay into highly boosted top/W/Z


→ collimated jets - @ 10 TeV, R = 0.02 for W boson!

Considering jets from tracks only:

- → Build taggers from jet sub-structure observables:
- Soft-dropped jet mass and N-subjettiness variable for top
- Isolation-like variables for W

Example of variables used in taggers

Expected capabilities with nominal assumptions on tracking resolution

Repository

Branch: master ▼ FCCAnalyses / FCChhAn	Create new file Find file History	
This branch is 3 commits ahead of clementhe	্রী Pull request 🚊 Compare	
vvolkl add interpreter example and update doc	vvolkl add interpreter example and update doc	
Dijet_reso	Fix installation of the module	13 months ago
RSGraviton_ww	Fix installation of the module	13 months ago
W_top_vs_QCD_tagger	Fix installation of the module	13 months ago
Zprime_II	Fix installation of the module	13 months ago
Zprime_mumu_flav_ano	Fix installation of the module	13 months ago
Zprime_tautau	Fix installation of the module	13 months ago
■ Zprime_tt	Fix installation of the module	13 months ago
i h2l2v	Fix installation of the module	13 months ago
1 h4l	Fix installation of the module	13 months ago
i haa	Fix installation of the module	13 months ago
hh_boosted	Fix installation of the module	13 months ago
hhbbaa	Fix installation of the module	13 months ago
hhbbaa_cms	Fix installation of the module	13 months ago
hmumu	Fix installation of the module	13 months ago
i hza	Fix installation of the module	13 months ago
ttV_test	Fix installation of the module	13 months ago
tth_4l	add interpreter example and update doc	3 months ago
tth_boosted	Fix installation of the module	13 months ago
tth_mumu	Fix installation of the module	13 months ago
tttt	Fix installation of the module	13 months ago
■ vbs	Fix installation of the module	13 months ago
■ vbs_ww	Fix installation of the module	13 months ago
initpy	Fix installation of the module	13 months ago