FCC-ee detectors: overview

Iacopo Vivarelli University of Sussex

FCC-UK - 11 September 2020

Introduction

- Overview of detectors:
 - CLD and IDEA discussed in FCC-ee Conceptual Design Report (CDR)
 - Complementary choices for these benchmark detectors
 - Focusing on **what has been done so far** (dedicated talks will discuss opportunities as well)
- References:
 - FCC-ee CDR
 - CLD detector paper: https://arxiv.org/abs/1911.12230
 - IDEA: Presentations at FCC-ee workshop 2020, ICHEP 2020

What physics?

- $\sin^2 \theta_W^{\text{eff}}$ mainly from $A_{\text{FB}}^{\mu\mu}$
- • m_W and width at o(1 MeV)
- $m_{\rm top}$ and width at $o(10-50~{\rm MeV})$
- Auxiliary measurements ($\alpha_{\rm QED}(m_Z^2)$, Z boson mass and width, $\alpha_S^2(m_Z^2)$)
- -Model-independent $\Gamma_{\!H}$, Higgs couplings and Higgs to invisible
- BSM models (ALPs, dark photon, light dark matter,)

- 5x10¹² Z, 10⁸ WW pairs, 10⁶ Higgs bosons and 10⁶ top pairs expected.
- Different running conditions depending on beam energy

- Synchrotron radiation losses kept at 50 MW/beam.
- High-current/low RF at the Z pole, small-current/high RF voltage for $t\bar{t}$
- Bunch spacing ranging from 20 ns (Z) to 7 µs (top)
- Crab-waist collision scheme guarantees high luminosity.

Collision point and machine requirements OF SUSSEX

- Large (30 mrad) crossing angle between beams + low beam emittance ⇒ detector magnetic field 2 T max
- Machine-detector interface structure (large angle + shielding + compensating magnets + luminometer) limit detector acceptance to ±150 mrad.

 Residual synchrotron radiation and incoherent pair creation drive ID and VTX detectors occupancy.

Physics requirements

Physics Process	Measured Quantity	Critical Detector	Required Performance
$ZH \to \ell^+\ell^- X$	Higgs mass, cross section	Tracker	$\Delta(1/p_{\rm T}) \sim 2 \times 10^{-5}$
$H \to \mu^+ \mu^-$	$\mathrm{BR}(H \to \mu^+ \mu^-)$	Паске	$\oplus 1 \times 10^{-3}/(p_{\rm T}\sin\theta)$
$H \to b\bar{b}, \ c\bar{c}, \ gg$	$BR(H \rightarrow b\bar{b}, c\bar{c}, gg)$	Vertex	$\sigma_{r\phi} \sim 5 \oplus 10/(p \sin^{3/2} \theta) \ \mu \mathrm{m}$
$H \to q\bar{q}, \ VV$	$BR(H \to q\bar{q}, VV)$	ECAL, HCAL	$\sigma_E^{ m jet}/E\sim 3-4\%$
$H \to \gamma \gamma$	$BR(H \to \gamma \gamma)$	ECAL	$\sigma_E \sim 16\%/\sqrt{E} \oplus 1\% \text{ (GeV)}$

- Very good momentum resolution.
- Very good vertex resolution.
- Excellent Hadronic calorimetry.
- Good, but not extreme, EM calorimetry
- Good tau identification capabilities and ability for polarisation measurements, very good PID.

The detectors

CLD (CLIC-like detector)

2 T solenoid **outside calo Full silicon** tracker SiW high-granularity EM Calo Sci-steel high-granularity HAD Calo RPC-based Muon detector **IDEA** (International Detector for Ep Accelerators)

2 T thin solenoid within calo Si vertex detector Tracking with ultra light drift chamber Dual Readout Calorimeter + preshower MPGD (µRwell) based Muon detector

I. Vivarelli - FCC-UK - FCC-ee detectors - 11 September 2020

CLD - Vertexing and tracking

VTX:

- Pixel size 25x25 μm^2 - 50 μm sensor thickness - aiming at 3 μm resolution

- Material and cooling benchmarked on ALICE ITS LS2 upgrade design (MAPS)

- Occupancy dominated by IPC - higher at the Z pole and below 1% (Safety factor 5 - 10 µs readout window) - Power dissipation: 40 mW/cm² - water cooled

ID:

- Single point resolution 7x90 µm² 5x5 µm² in 1st layer.
- Inner tracker: Barrel 3 layers, end-cap 7 discs.
- Outer tracker: Barrel 3 layers, end-cap 4 discs.

UNIVERSITY OF SUSSEX

IDEA - Vertexing and tracking

- VTX similar to CLD
- •Tracking with drift chamber (similar in concept to MEG II chamber)
 - \bullet Minimising multiple scattering, adding only 2% X_0 to material in front of calorimeter
 - R_{in} = 35 cm, R_{out} = 200 cm, L = 400 cm, drift time o(300 ns)
 - \bullet 90% He 10% iC_4H_{10} max drift time 360 ns, Stereo angle 30°
 - Cluster counting (12.5 cm⁻¹ clusters) improves spacial resolution and dE/dx measurement
 - \bullet Single point precision (with cluster counting) better than ~ 100 $\mu m.$

See <u>here</u> for more details

IDEA: Material vs. $cos(\theta)$

x-y view

CLD - Calorimeters

IDEA - Calorimetry+preshower

- Preshower under optimisation, using μ -RWELL - aim: provide one last tracking point, help for π_0 identification.
- Single calorimeter, with **1.5 mm fiber pitch** and Cherenkov/Scintillation dualreadout.
 - For details about dual-readout, see <u>here</u>
- •No mechanical longitudinal segmentation, ~ 7 λ_l length.
- Good **EM intrinsic** energy resolution, excellent **hadronic** resolution

Magnet and muon system

CLD:

- 2 T superconducting solenoid **outside** calorimeters, I = 20-30 kA, 0.7 λ_I
- Return yoke field barrel ~ 1 T
- Muon spectrometer **based on RPC** performance based on a 30x30 mm² cell size

IDEA:

- Thin superconducting solenoid within the calorimeter volume (0.46 X₀ cold mass, 0.28 X₀ cryostat)
- Current design: NbTi/Cu conductor + high strength aluminum for cryostat - 8 ton total
 Muon spectrometer using µ-RWELL

Tracking performance

- IP resolution $o(10 \ \mu m)$ for CLD, similar for IDEA
- Very low amount of material in IDEA minimising Multiple Scattering (MS).
- Interesting range 20 GeV GeV (in, e.g., ZH production)

Single particle (calo) response

- Calo response to neutral particles (relevant for PF) compared to that of electrons and pions
 - However, dual-readout response is hadronindependent

100

pions

kaons

140 160 Reconstructed energy (GeV

UNIVERSITY OF SUSSEX

Performance (jets)

- •CLD: particle flow (non optimised) + dedicated software compensation corrections (on or off)
- •IDEA: pure calorimetric measurement compared with a "track aided" calibration

0.09F

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0

60

w

Arbitrary units

• Full collision events used

125 GeV bosons, 400 ns, no BG

80

90

100

di-jet mass [GeV]

110

FCC-ee CLD

VLC11 Jets

Z bosons

W bosons

2800

600

400

200

ŏ50

60

70

$$e^{+}e^{-} \rightarrow ZH \rightarrow jj\tilde{\chi}_{0}^{1}\tilde{\chi}_{0}^{1}$$
$$e^{+}e^{-} \rightarrow WW \rightarrow jj\mu\nu$$
$$e^{+}e^{-} \rightarrow ZH \rightarrow \nu\nu bb$$

Calo+Charged 1x0 material

120

100

80

Ongoing R&D

- FCC-ee CDR discusses in some detail two benchmark detectors using different philosophies:
 - CLD: all silicon ID, PF-optimised calo. IDEA: drift chamber + dual readout calo.
 - Status of sub-detectors R&D **varies a lot across the board** in some case profiting from previous work on linear colliders or other experiments (e.g. MEG)
 - Satisfactory performance achieved on simulation and test beam
 - ...and full simulation available for physics studies.
- Lots of opportunities see next talks.
 - ...especially if more than 2 interaction points are considered

DCH - Cluster Counting

dE/dx

- He-based gas mixtures + fast electronics -> Access to the number of ionisation clusters produced. Can measure dN/dx (better than dE/dx for truncated mean)
- Need fast electronics (1 GHz sampling)
 - Impact on readout strategy in terms of bandwidth required.

Performance (flavour tagging)

• Performance evaluated at Z pole and top pair production threshold. Results using truth tracking and reconstruction to decouple detector effects from algorithmic effects.

- Z pole: Z produced at ~100 kHz rate + 30 kHz $\gamma\gamma \rightarrow$ hadrons.
 - VTX (IDEA and CLD similar): bandwidth **dominated by IPC** (750 hits assuming 1 µs integration time) 6 GB/s (13 bit encoding)
 - CLD tracking: similar bandwidth to VTX expected (1 µs integration time 10 GB/s)
 - IDEA drift chamber full pulse shape ~ 1TB/s, dominated by IPC, reduced to 30 GB/s (dominated by Z) after FPGA feature extraction for cluster counting.
 - Total IDEA throughput ~ 100 GB/s.
- Assuming current technology, numbers need to be reduced by a factor 5-10 for permanent storage.

Simulation status

- •CLD full detector simulation exists (geometry in DD4Hep and used for performance studies in <u>https://</u> <u>arxiv.org/abs/1911.12230</u>)
- •IDEA G4 implementation of sub detector geometries exist - but not a combined one
 - Geometry of Calo and preshower being migrated to DD4Hep for use within FCCee framework.
 - Most performance studies based on standalone G4 simulation
- •Delphes parameterisations of detector response exist for both detectors.

UNIVERSITY OF SUSSEX

CLICDet Vs CLD

- Main changes to CLICDet:
 - Magnetic field from 4 to 2 T to avoid blowing up the beam
 - As a consequence, ID outer radius increased
 - Change in the maximum CM energy
 - Shorter HCAL (7.5 $\lambda_{l} \rightarrow 5.5 \lambda_{l}$)

Concept	CLICdet	CLD
Vertex inner radius [mm]	31	17.5
Vertex outer radius [mm]	60	58
Tracker technology	Silicon	Silicon
Tracker half length [m]	2.2	2.2
Tracker inner radius [m]	0.127	0.127
Tracker outer radius [m]	1.5	2.1
Inner tracker support cylinder radius [m]	0.575	0.675
ECAL absorber	W	W
ECAL X_0	22	22
ECAL barrel r_{\min} [m]	1.5	2.15
ECAL barrel Δr [mm]	202	202
ECAL endcap z_{\min} [m]	2.31	2.31
ECAL endcap Δz [mm]	202	202
HCAL absorber	Fe	Fe
HCAL λ_{I}	7.5	5.5
HCAL barrel <i>r</i> min [m]	1.74	2.40
HCAL barrel Δr [mm]	1590	1166
HCAL endcap z_{\min} [m]	2.54	2.54
HCAL endcap z_{max} [m]	4.13	3.71
HCAL endcap r_{\min} [mm]	250	340
HCAL endcap r_{max} [m]	3.25	3.57
HCAL ring z_{\min} [m]	2.36	2.35
HCAL ring z_{max} [m]	2.54	2.54
HCAL ring r_{\min} [m]	1.73	2.48
HCAL ring r_{max} [m]	3.25	3.57
Solenoid field [T]	4	2
Solenoid bore radius [m]	3.5	3.7
Solenoid length [m]	8.3	7.4
Overall height [m]	12.9	12.0
Overall length [m]	11.4	10.6

CLD - Magnet and muon system

- 2 T superconducting solenoid **outside calorimeters**, I = 20-30 kA, 0.7 λ_I
- Return yoke field barrel ~ 1 T
- Muon spectrometer based on RPC performance based on a 30x30 mm² cell size

IDEA - Magnet and muon system

- •Thin superconducting solenoid within the calorimeter volume (0.46 X₀ cold mass, 0.28 X₀ cryostat)
 - Current design: NbTi/Cu conductor + high strength aluminum for cryostat -8 ton total
- Muon spectrometer using µ-RWELL

Miscellanea

- CLD VTX and ID detector assumes 40 mW/cm² and water cooling (no power-pulsing like CLICDet)
- CLD ECAL (based on ILD/CALICE design): with no power pulsing 200-400 kW expected.
- CLD: Occupancy of VTX dominated by IPC and similar at the different energy points. Expected at the permille level (10 µs time readout - safety factor 5), even lower in the inner tracker.
- IDEA: Occupancy of drift chamber expected o(1%), not considered to be a problem.

Costs

From <u>CLD presentation at FCC workshop January 2020</u>

• IDEA: total cost dominated by DR calorimeter (currently estimated ~ 150 Meuro