

Tracking and vertexing opportunities

FCC-UK: a discussion concerning UK involvement in the FCC project

Harald Fox (also stand-in for Roy Lemmon)

Thanks to Phil Allport, Laura Gonella, Adrian Bevan, Jaap Velthuis for hints and discussions and to everyone who (unwittingly) contributed slides.

Outline

- Constraints from the accelerator and physics
- Vertexing and tracking in the CLD and IDEA detectors
- Digression into CLIC and ILC
- Sensor technologies
- Power consumption and cooling
- Low mass ultra-thin stitched sensors for vertexing
- ATLASPix as fast tracking sensor
- Low mass detector R&D
- Conclusions

Accelerator and Plan

Parameter		WW	ZH	$t\overline{t}1$	$t\overline{t}2$
Beam Energy (GeV)	45.6	80	120	175	182.5
Beam current (mA)	1390	147	29	6.4	5.4
Number of bunches	16640	2000	328	59	48
Beam RF voltage (MV)	100	750	2000	9500	10 930
Run time (year)	4	2	3	1	4

Table 3.10. Machine parameters.

Start off with the most challenging condition:

- 20ns bunch spacing
- high number triggers

 Table 2.1. Machine parameters of the FCC-ee for different beam energies.

		WW	ZH	1	tt	
Circumference (km)		97.756			``Low'' field strength
Bending radius (km)		10.760			requires componention
Free length to IP ℓ^* (m)			2.2			requires compensation
Solenoid field at IP (T)			2.0			to achieve good pT
Full crossing angle at (mra	d)		30			resolution
IP θ						
SR power / beam (MW	7)		50			∝ L2
Beam energy (GeV	V) 45.6	80	120	175	182.5	_ ∝ B
Beam current (mA	.) 1390	147	29	6.4	5.4	6
Bunches / beam	16640	2000	328	59	48	$\neg \propto 0$
Average bunch spac- (ns)	19.6	163	994	2763^{a}	3396^{a}	_ ∝ √ Ν
ing						

 $H \to qq, WW^*, ZZ$

Impact parameter resolution driven by separating b, c, τ

CLD detector

Concept	CLICdet	CLD
Vertex inner radius (mm)	31	17
Tracker half length (m)	2.2	
Tracker outer radius (m)	1.5 -	2.1
ECAL absorber	W	
ECAL X_0	22	
HCAL absorber	Fe	
HCAL $\lambda_{\rm I}$	7.5	5.5
Solenoid field (T)	4 —	▶ 2
Overall height (m)	12.9	12.0
Overall length (m)	11.4	10.6

not (quite) achievable with 180 nm technology

Single point resolution

- 3 double layers $3 \times 3 \mu m$ for vertex, 0.6% X₀ each
- $5 \times 5 \ \mu m$ for innermost disk
- 7 × 90 μm for the rest tracker (25 × 300 μm pixel size); 1-1.5% X0
 can be done with large fill factor design

50 / 1100 hits BX in VXD from IPC (Incoherent pair creation) @ 91/365 GeV

- max occupancy 1e-5
- needs to be integrated over a few µs for ``slow" detectors
- negligible

350 hits/BX from synchrotron rad @ 365 GeV occupancy O(1e-4 More need for PID?

- Vertex detector based on ALPIDE
- $5 \times 5 \,\mu m$ point resolution

- Outer vertex layer at r = 34cm
- Fast drift chamber
- ▶ 1.6% X₀ in total
- DCH also provides good PID
- 2 layer Si wrapper at r ≈ 2m

Large # of measurement points and lower X/X_0 of DC + wrapper winning over better hit resolution of Silicon

D. Contardo, FCC Week, January 2020

Digression into CLIC and ILC

Physics | Lancaster University

Power pulsing at linear colliders

FCCee workshop, January 2020

A.Desson, suasoourg oniversity

Some recent Silicon technology demonstrators ($\simeq 2 \times 2 \text{ cm}^2$)

9

25 × 300 µm

	Readout speed	Analog Power mW/cm ²	Digital Power mW/cm2	Serial Powering
Mimosa28	185.6 µs 160 MHz	41+63	46 20 cm	
Alpide	50/200 kHz 400Mbps	6 (in matrix)	34 1.5 cm —	
Malta	25 ns	70	3 - 80	
AtlasPix3	25 ns 400 Mbps	30	110 50 cm	
ITS3 65nm		<20 (pixel matrix)	34 × 4 ? 28 cm	

STAR was able to air-cool Mimosa28, without disks (sic!). All sensor options are within a small factor of each other Can we save power by slowing the sensor down, or being clever with a data aggregator?

Stitching and power consumption

- ALPIDE power consumption in the matrix:
 - Analog ~ 5 mW/cm²
 - Digital ~ 1 mW/cm²

Sensitive area: 4.12 cm² Inner Barrel: 36.9 mW/cm² Outer Barrel: 20.2 mW/cm² In the matrix: (analog + digital)/area (22.2 + 3.2)/4.12 = 6.2 mW/cm²

17

- Analog will hopefully not increase too much, but digital will if we are not careful
- Data will be transmitted over 28 cm instead of 1.5 cm so 20x in distance, digital power density will increase with the same factor if line toggles are not reduced... (example see next slide)

walter.snoeys@cern.ch

There is a factor of 4-5 possible in reduction

W. Snoeyes, FCC Workshop, January 2020

Cooling I

Air cooling

End-of-stave cooling

ALICE investigated end of stave cooling for their upgrade.

Roughly half of the input power can be absorbed, leaving a **ΔT** of up to **23°C** within the

stave.

Water leakless (<1bar) baseline

The **STAR** detector cools 2 layers of MIMOSA28 sensors (150mW/cm²) with an air flow of 10 m/s, but without disks.

CLIC studied 50mW/cm² for the CDR.

UK experience with **Mu3e** and **PLUME**.

Water in 15°C--->Tchip <30°C Pixel max temperature non-uniformity < 5°C

Pressure drop ΔP below 0.3 bar

q [W cm ⁻²]	G [L h ⁻¹]	ΔT _{CHIP-H20} [K]	ΔΤ _{Η2Ο} [K]	∆p [bar]	ΔT _{HEATERS} [K]	v _{H2O} [m s ⁻¹]
0.15	6.3	6.7	6.9	0.08	4	0.31

G. Gargiulo, CLIC Tracker Technology Meeting, 28/5/15

Cooling II

ATLAS uses **evaporative CO2 cooling** within thin Ti pipes running within the staves.

Figure 9.1: Schematic of the internal structure of the stave core, with the silicon sensors and ASICs added. Glue layers are not shown. Not to scale.

Technology of bending and welding of thin-walled Ti pipes has been developed over the **last decade in the UK**.

CO2 cooling is very powerful.

Other evaporative coolants (e.g. C4F10) are possible.

ALICE, LHCb and NA62 develop micro-channel cooling

DRIE OF 30 µM DEEP TRENCHES (3 x 10 µm)

XeF2 ETCHING OF MICROCHANNELS (diam. 40 µm)

TRENCHES FILLED WITH PARYLENE (5 LIM)

Work in the UK...

e.g. BCTs in

25 µm

MALTA

A. Mapelli, 3rd FCC Physics and Experiments Workshop 13-17 January 2020 indico.cern.ch/event/838435

H. Fox

TowerJazz Ultra Thin 65nm Sensor

based on:

- wafer-scale (up to ~28x10 cm),
- ▶ ultra-thin (20-40 µm),
- bent (R=18, 24, 30 mm)
 Si sensors (MAPS)

Aim: 0.3% \rightarrow ~0.03% X0

65nm technology is mainly for going to 8" wafers!

Bent along the short side

- Bending affects pixel matrix only
- Bonding area is glued: flat and secured
- Variable curvature (down to 1 cm radius)

(Thinned Alpide sensor)

Φ Pixel pitch O(10μm): **20 × 20 μm**

Shorten integration time 5µs \rightarrow 2µs

Participating institutes: LBNL, Birmingham, RAL CMOS Sensor Design group, Wuhan, BNL instrumentation division, JLAB, Daresbury and Liverpool, plus many interested institutes

Development driven by **ALICE (and EIC)**, but clearly of interest for Higgs factories!

G. Contin and L. Gonella, 2020 EIC SVT Workshop

ATLASPix3 for tracking

Full size (2 × 2 cm sensor) designed for LHC Fully functional: successful test beam at DESY

Sizable community developing: Bristol, Edinburgh, Lancaster, Liverpool and RAL; Daresbury, Oxford, QMUL, Sheffield and Warwick; Karlsruhe; Como, Milano, Pisa and Torino; several Chinese groups

Eva Vilella-Figueras part of the design team. Close relations to MuPix for the **Mu3e experiment**

A candidate sensor for the LHCb Mighty Tracker upgrade.

Single chip boards to be bonded and distributed to participating institutes

Test evolvement of ATLASPix3 (MPW submission):
Smaller pixel size (25μm) in φ direction
Lower capacitance
Amplifier and comparator design
Electronics in pixel or periphery
Data aggregation between chips

Other UK Activities

$0.35\%\,X_0$ towards ${\sim}0.1\%\,X_0$

PLUME / preich 2911 EEAC Mappy Oxford

Mu3e (UK: Bristol, Liverpool, Oxford, UCL)

Physics | Lancaster University

Perspective

Experiment	Ref.	x/X_0 per layer [%]
ATLAS IBL	[1]	1.9
CMS Phase I	[2]	1.1
ALICE upgrade	[3]	0.3
STAR	[4]	0.4
Belle-II IBL	[5]	0.2
Mu3e		0.1

I Bare flex II with spacer and steel chips. III ends folded over

1

16

K. Arndt, 2019 CEPC Workshop, Oxford

Support structure: ALICE

Stave: ATLAS Pixel Carbon Fibre Support Structure

Figure 15.19: ALPINE design for the inclined layout.

FP-DT

	TFM (K·cm ² ·W ⁻¹)				
Layer	Conductive Convective		Global		
0	11	4.3	15		
1	16	8.6	25		
2	12	8.6	21		
3	15	8.6	24		
4	18	8.6	27		

D. GIUGNI

RAL and Liverpool

Conclusions

Physics | Lancaster

A Higgs factory offers exciting physics potential.

Vertex and tracking detectors play an important role.

There are lots of detector developments going on worldwide, in particular CLIC has spawned a lot of R&D. **Many developments I have not been able to cover** (hybrid detectors, MIMOSA and derivatives with full frame readout, Sol, ARCADIA, Monopix, **MALTA**....)

The UK has a strong position in various areas.

TJ 65nm with ultra-thin stitched sensors are

an exciting opportunity for a high resolution low mass vertex detector. Share the development (cost) with many countries and experiments: usage in **ALICE, EIC, Higgs factory**....

UK (RAL) was instrumental in launching modern MAPS!

ALPIDE is a good and available (back-up) choice for a vertex detector, especially when combined with a fast tracking detector.

ATLASPix is a good starting point for a (fast) tracking detector with a large user and development base (in the UK), available now for large tracking detector development.

It is **evolving** for a Higgs factory.

Long standing R&D projects and new experiences with low mass detectors (Mu3e, PLUME, ZMD....)