Quantum Technologies for Neutrino Mass Consortium

Determination of Neutrino Mass with Quantum Technologies

A collaboration of particle, atomic and solid state physicists, electronics engineers and quantum sensor experts

Quantum Leaps to the Dark Side Cyberspace 9-11 November 2020

Ruben Saakyan (UCL)

10-Nov-2020

Outline

- The question of neutrino mass
- ³H β -decay. State of the art
- "Never measure anything but frequency..."
- Quantum technologies for ultimate reach
- QTNM proposal
- Future plans

Most abundant particle of matter in the Universe (we still do not know much about)

What we know (and don't) from neutrino oscillations

Neutrino Mass Hierarchy

Still not known:

- Mass ordering
- CP-violation phase
- Is there sterile neutrino(s)
- Absolute mass

	https://globalfit.astroparticles.es/		
parameter	best fit $\pm 1\sigma$	2σ range	3σ range
Δm^2_{21} : [$10^{-5} { m eV}^2$]	$7.50\substack{+0.22\\-0.20}$	7.11-7.93	6.94-8.14
$ \Delta m^2_{31} $: $[10^{-3}{ m eV}^2]$ (NO)	$2.56 \substack{+0.03 \\ -0.04}$	2.49-2.62	2.46-2.65
$ \Delta m^2_{31} $: $[10^{-3}{ m eV}^2]$ (IO)	2.46±0.03	2.40-2.52	2.37-2.55
$\sin^2 \theta_{12} / 10^{-1}$	3.18±0.16	2.86-3.52	2.71-3.70
$\sin^2 heta_{23}/10^{-1}$ (NO)	$5.66^{+0.16}_{-0.22}$	5.05-5.96	4.41-6.09
$\sin^2 heta_{23}/10^{-1}$ (IO)	$5.66^{+0.18}_{-0.23}$	5.14-5.97	4.46-6.09
$\sin^2 heta_{13}/10^{-2}$ (NO)	$2.225 \substack{+0.055 \\ -0.078}$	2.081-2.349	2.015-2.417
$\sin^2 heta_{13}/10^{-2}$ (IO)	$2.250 \substack{+0.056 \\ -0.076}$	2.107-2.373	2.039-2.441
$\delta_{ m CP}/\pi$ (NO)	$1.20 \substack{+0.23 \\ -0.14}$	0.93-1.80	0.80-2.00
\$ 1-400	1 5/+0 12	1 27 1 70	1 1 / 1 00

QTNM, R. Saakyan (UCL)

Neutrino mass

- Only solid evidence for Physics beyond Standard Model
- Smallness of mass suggests new mass generation mechanism (not "straight" Higgs)
- Connected to new physics
 - Matter-antimatter asymmetry (CP-violation)
 - Lepton Number Violation
 - Sterile-neutrino

Absolute neutrino mass is a key unanswered question that connects it all.

10-Nov-2020

How to access Absolute Neutrino Mass

Model Independent Neutrino Mass Measurement

(b)

 2×10^{-13}

0

State-of-the-art: KATRIN Experiment

Ultimate sensitivity ~0.2 eV

$$\frac{\Delta E}{E} \propto \frac{B_{\min}}{B_{\max}}$$

 $\frac{\Delta E}{E} \le 0.01\%$ (~ 5x10⁻⁵)

Scales with spectrometer size Already 10m in diameter and 24m in length for KATRIN.

MAC-E cannot be scaled up beyond KATRIN

- Powerful constraints from cosmology but cannot replace lab measurements
- Kinematic" measurement of β-decay spectrum is the **only model independent method**
- Two clear sensitivity goals: **50 meV** for **I.O.** and **9 meV** for **N.O.**

"Guaranteed" observation if technology demonstrated

The Scale of the challenge

How to overcome present technology limitations?

Determine energy of electron emitted in ³H β -decay by measuring the frequency of EM radiation generated due to electron's cyclotron motion in magnetic field

Cyclotron Radiation Emission Spectroscopy (CRES)

Concept put forward by Project-8 Collaboration

- Source transparent to microwave radiation
- No losses due to e- transport from source to detector
- Leverages exquisite precision in frequency techniques
- Differential spectrum measurement

Cyclotron Radiation Emission Spectroscopy (CRES) Concept

Proof of principle by Project-8 using ^{83m}Kr conversion electrons

 $Q_{\beta} = 18.6 \text{ keV} \Rightarrow ^{2}6 \text{ GHz}$ in 1Tesla B-field

CRES Challenges

10-Nov-2020

CRES Challenges

Three main obstacles on the the way to "guaranteed" observation, O(10 meV)

- Trapping

 O(10²⁰) T atoms in a
 magnetic trap
- Mapping B-field with ≤0.1 ppm precision using quantum sensing

• Quantum devices for microwave (25-30GHz) spectrometry, sub-sub-fW, $\Delta f/f < 10^{-6}$

Determination of Absolute Neutrino Mass Using Quantum Technologies

Quantum Technologies for Neutrino Mass Consortium

A collaboration of particle, atomic and solid state physicists, electronics engineers and quantum sensor experts

3-yr proposal goal:

Technology demonstration for neutrino mass determination from ³H β -decay

- Trapping ~10²⁰ D/T atoms
- B-field mapping with ≤0.1ppm precision
- Quantum limited micro-wave electronics

Neutrino mass measurement at a Tritium facility (e.g. *Culham Centre for Fusion Energy*)

Cryogenic HEMT amplifier SLUG or JTWPA preamp (downselect) From devices to quantum limited integrated system

spectroscopy

Rydberg states and Ramsey

D-atom source

Magnetic trap/CRES

- Demonstration with D-atoms
- But make it T-ready!

WP1. Simulations and Analysis.

- Nuclear/atomic effects.
- Spectrum fitting for m_{ν} .
- Effect of massive and/or sterile neutrinos on electron energy distribution.
- 3D particle trajectory simulations
- Atoms and electrons in trap, collision, ionisation, plasma effects
- RF emission, propagation and detection
- Noise and background

WP2. Atomic Beam Source and Magnetic Trap

- <u>D-atom Source</u>. Cryo-cooled supersonic source based on electric discharge of D₂. Output: Datoms with 650±50 m/s, 10¹⁴-10¹⁵ cm⁻³.
- <u>Zeeman Decelerator</u>. Successfully demonstrated for D-atoms and suitable for high densities.
 Output D-atoms with 50 m/s, T ~ 0.1K.
- <u>Magnetic Trap</u>. 1L multipole superconducting magnetic trap. Optimisation of loading technologies. Density characterised by laser and MW spectroscopy. Identify traces of D₂ by comparing REMPI spectra of D₂ and D.

WP3. 3-D Magnetic Field Mapping

- High-res MW spectroscopic measurement of transitions between circular Rydberg states by Ramsey spectroscopy.
- State selective ionisation and ion imaging
- Measuring B-field with precision 0.1ppm possible.
- Spatial resolution at a level of 0.1mm
- Scheme can be used for precise determination of Rydberg constant ⇒ possible contribution to "proton radius puzzle"

WP4. Cyclotron Radiation Detection.

From devices to quantum noise limited microwave detection systems

Future Outlook

- The goal of this 3yr proposal is to build and operate CRESDA at UCL and to demonstrate technology with Deuterium but *which is Tritium ready*.
- Next step is to move **CRESDA** to a Tritium centre (strong engagement with **Culham**!) and operate it with Tritium.
- The above will have its own physics programme (<mv> ~1 eV, sterile neutrino) and act as technology demonstration for ultimate international project.
- Ultimate international project that consolidates technological breakthroughs elsewhere (e.g. Project-8) to build and operate a detector achieving a phased sensitivity of 50 meV and 10 meV and probing sterile neutrino.
- Hosting the ultimate neutrino mass experiment in the UK at Culham would be a unique opportunity and major advantage.