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Dark Energy as seen from the cosmological side

Opportunities for Discovery

Many mysteries to date go unanswered including:
The mystery of the Higgs boson

The mystery of Neutrinos

The mystery— of Dark Matter

They mystery of Dark Energy :

The mystery of quarks and charged Ieptons :
The mystery of Matter — anti- Matter asymmetry
The mystery of_ the: Hlerarchy Problem
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Dark Energy in numbers: How much?

Dark Matter

Dark Energy

Planck Collaboration 15



Dark Energy in numbers: How much?
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Dark Energy in

numbers: What is it?

The equation of state:
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Dark Energy in numbers: What is it?
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Dark Energy: Challenges

The observational side:

[V2<I>_47er, A—G?>>1]

Planck Collaboration 15

Large uncertainties for observables.




Dark Energy: Challenges

The observational side: ,
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Large uncertainties for observables.

The theory side:
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Image credit: BBC News "06 The problem is not fine tuning as such, but its radiative instability.



Probing Dark Energy = Testing GR

(on large scales)

GR as unique consistent theory

of a massless spin-2 field. Probing GR = looking for new grav. particles.




Probing Dark Energy = Testing GR

(on large scales)

GR as unique consistent theory

of a massless spin-2 field.

Probing GR = looking for new grav. particles.

Where do observational constraints come from:

Photons from the CMB probe
gravitational potential along line of sight

400 1t Mpe

redshift space 200 B Mpe

62205 galaxies

Gravitational wave propagation probes
interactions with dark energy

Large scale structure probes structure
formation via clustering and lensing



Probing Dark Energy: Gravitational waves

e Constraints on speed of GWs: |cdy — 1| <1071,

LIGO & Virgo Collaborations 17, Fermi, IGAL '17

e New gravitational degrees of freedom can easily lead to cqw # 1.

e Resulting tight bounds on dark energy/modified gravity.

Baker, Bellini, Ferreira, Lagos, JN, Sawicki 17, Creminelli, Vernizzi 17,
Ezquiaga, Zumalacarregui '17, Sakstein, Jain 17 + many follow ups.



Probing Dark Energy: Gravitational waves

Lo =Gy, Lz=G30p, Ly=GsR+Gyx {(D¢)2 — V,uvuqbvuvyﬁb} ,
1
Ls = G5G,, V'V ¢ — 6G&X{(ng)3 — 3VIVY ¢V, V,¢0¢ + 2V'V .6V V,pVH*V 6 } .

where G; = Gi(¢, X) and X = —%V‘“‘qf)v,ud)

Horndeski theory as general ST theory

Horndeski *74, Deffayet, Gao, Steer, Zahariade 11




Probing Dark Energy: Gravitational waves
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Horndeski theory as general ST theory

Horndeski 74, Deffayet, Gao, Steer, Zahariade 11

L= G4(¢)R + G2(¢3X) o G3(¢7 X)qu

Baker, Bellini, Ferreira, Lagos, JN, Sawicki '17, Creminelli, Vernizzi '17,
Ezquiaga, Zumalacarregui '17, Sakstein, Jain 17 + many follow ups.



Probing Dark Energy: CMB + LSS

weaker Gravity

T =

y-axis ~ what is the gravitational
constant G
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Photons from the CMB probe
gravitational potential along line of sight
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Large scale structure probes structure
formation via clustering and lensing



Probing Dark Energy: CMB + LSS

JN, Nicola '18a, 18b
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Photons from the CMB probe Large scale structure probes structure
gravitational potential along line of sight formation via clustering and lensing



Probing Dark Energy: CMB + LSS + GW

weaker Gravity

T 1

y-axis ~ what is the gravitational :
| GW constraints
/;f‘(ﬁlf'ﬁ.(i“b et. al '19, JN 20
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constant G7

l

stronger Gravity

Demanding healthy GW-DE interactions
can be used to constrain dark energy



Probing Dark Energy: CMB + LSS + GW

weaker Gravity

T 1

y-axis ~ what is the gravitational 5
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/;f‘( minelly et. al 19, JIN 20
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U
L =G4(¢)R+ G2(¢, X)

Demanding healthy GW-DE interactions
can be used to constrain dark energy



Speed of GWs

Frequency (Hz):

Distance (km):

Outlook

The Big Picture

PTA LISA LIGO
10718 10~13 108 102 10? 10%3
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Speed of GWs

The Big Picture

PTA LISA LIGO New physics
Late universe Planck
cosmology NL scale
Frequency (Hz): 1018 1013 108 1072 102 1013
Distance (km): 1023 km 103 km 107 km 103 km 1038 km

Plethora of upcoming cosmological data:
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Outlook + The Big Picture

Speed of GWs
PTA LISA LIGO New physics
Late universe Planck
cosmology NL scale
Frequency (Hz): 1018 1013 108 1072 102 1013
Distance (km): 10%? km 10' km 107 km 10% km 1038 km

Plethora of upcoming cosmological data: S!"@

Large Synoptic Survey Telescope

Novel theoretical *“constraints” :

GW-induced constraints Radiative stability of DE theories ‘Positivity’ bounds



Outlook + The Big Picture

Speed of GWs
PTA LISA LIGO New physics
Late universe Planck
cosmology NL scale
Frequency (Hz): 1018 1013 108 1072 102 1013
Distance (km): 10%? km 10' km 107 km 10% km 1038 km

Plethora of upcoming cosmological data: S!"@

Novel theoretical *“constraints” :

GW-induced constraints Radiative stability of DE theories ‘Positivity’ bounds

Johannes Noller, DAMTP, Cambridge UK HEP Forum 2020, 11/11/2020



