Dark Energy as seen from the cosmological side

Johannes Noller

DAMTP, Cambridge ICG, University of Portsmouth (from 02/21)

Dark Energy as seen from the cosmological side

Dark Energy as seen from the cosmological side

Dark Energy in numbers: How much?

Dark Energy in numbers: How much?

Dark Energy in numbers: What is it?

Planck Collaboration '15

The equation of state:

$$w = \frac{\text{pressure}}{\text{density}}$$

$$w = w_0 + (1 - a)w_a$$

Dark Energy in numbers: What is it?

The equation of state:

$$w = \frac{\text{pressure}}{\text{density}}$$

$$w = w_0 + (1 - a)w_a$$

Dark Energy: Challenges

The observational side:

$$\left[\nabla^2 \Phi = 4\pi \, \frac{G}{G} \, \rho, \quad \frac{\Delta G}{G} \gg 1\right]$$

Planck Collaboration '15

Large uncertainties for observables.

Dark Energy: Challenges

The observational side:

$$\nabla^2 \Phi = 4\pi \, \frac{G}{G} \, \rho, \quad \frac{\Delta G}{G} \gg 1$$

Planck Collaboration '15

Large uncertainties for observables.

The theory side:

Image credit: BBC News '06

$$G_{\mu\nu} + \Lambda g_{\mu\nu} = T_{\mu\nu}^{mat} + T_{\mu\nu}^{DE} + \Lambda_{vac} g_{\mu\nu}$$

$$+$$
 $+$ $+$ $+$ $\Lambda_{vac} \int d^4x \sqrt{-g}$

Padilla '15

The problem is not fine tuning as such, but its radiative instability.

Probing Dark Energy = Testing GR

(on large scales)

GR as unique consistent theory of a massless spin-2 field.

Probing GR = looking for new grav. particles.

Probing Dark Energy = Testing GR

(on large scales)

GR as unique consistent theory of a massless spin-2 field.

Probing GR = looking for new grav. particles.

Where do observational constraints come from:

Photons from the CMB probe gravitational potential along line of sight

Large scale structure probes structure formation via clustering and lensing

Gravitational wave propagation probes interactions with dark energy

Probing Dark Energy: Gravitational waves

• Constraints on speed of GWs: $|c_{\text{GW}}^2 - 1| \lesssim 10^{-15}$.

LIGO & Virgo Collaborations '17, Fermi, IGAL '17

- New gravitational degrees of freedom can easily lead to $c_{\rm GW} \neq 1$.
- Resulting tight bounds on dark energy/modified gravity.

Baker, Bellini, Ferreira, Lagos, JN, Sawicki '17, Creminelli, Vernizzi '17, Ezquiaga, Zumalacarrequi '17, Sakstein, Jain '17 + many follow ups.

Probing Dark Energy: Gravitational waves

$$\mathcal{L}_{2} = \mathbf{G}_{2}, \quad \mathcal{L}_{3} = \mathbf{G}_{3} \square \phi, \quad \mathcal{L}_{4} = \mathbf{G}_{4} R + \mathbf{G}_{4,X} \left\{ (\square \phi)^{2} - \nabla_{\mu} \nabla_{\nu} \phi \nabla^{\mu} \nabla^{\nu} \phi \right\},$$

$$\mathcal{L}_{5} = \mathbf{G}_{5} G_{\mu\nu} \nabla^{\mu} \nabla^{\nu} \phi - \frac{1}{6} \mathbf{G}_{5,X} \left\{ (\square \phi)^{3} - 3 \nabla^{\mu} \nabla^{\nu} \phi \nabla_{\mu} \nabla_{\nu} \phi \square \phi + 2 \nabla^{\nu} \nabla_{\mu} \phi \nabla^{\alpha} \nabla_{\nu} \phi \nabla^{\mu} \nabla_{\alpha} \phi \right\}.$$
where $\mathbf{G}_{i} \equiv \mathbf{G}_{i}(\phi, X)$ and $X \equiv -\frac{1}{2} \nabla^{\mu} \phi \nabla_{\mu} \phi$

Horndeski theory as general ST theory

Horndeski '74, Deffayet, Gao, Steer, Zahariade '11

Probing Dark Energy: Gravitational waves

$$\mathcal{L}_{2} = G_{2}, \quad \mathcal{L}_{3} = G_{3} \square \phi, \quad \mathcal{L}_{4} = G_{4}R + G_{4,X} \left\{ (\square \phi)^{2} - \nabla_{\mu} \nabla_{\nu} \phi \nabla^{\mu} \nabla^{\nu} \phi \right\},$$

$$\mathcal{L}_{5} = G_{5}G_{\mu\nu} \nabla^{\mu} \nabla^{\nu} \phi - \frac{1}{6}G_{5,X} \left\{ (\square \phi)^{3} - 3\nabla^{\mu} \nabla^{\nu} \phi \nabla_{\mu} \nabla_{\nu} \phi \square \phi + 2\nabla^{\nu} \nabla_{\mu} \phi \nabla^{\alpha} \nabla_{\nu} \phi \nabla^{\mu} \nabla_{\alpha} \phi \right\}.$$
where $G_{i} \equiv G_{i}(\phi, X)$ and $X \equiv -\frac{1}{2} \nabla^{\mu} \phi \nabla_{\mu} \phi$

Horndeski theory as general ST theory

Horndeski '74, Deffayet, Gao, Steer, Zahariade '11

$$\mathcal{L} = G_4(\phi)R + G_2(\phi, X) - G_3(\phi, X) \square \phi$$

Probing Dark Energy: CMB + LSS

x-axis \sim how much does the graviton interact with DE scalar?

Photons from the CMB probe gravitational potential along line of sight

Large scale structure probes structure formation via clustering and lensing

Probing Dark Energy: CMB + LSS

x-axis \sim how much does the graviton interact with DE scalar?

Photons from the CMB probe gravitational potential along line of sight

Large scale structure probes structure formation via clustering and lensing

Probing Dark Energy: CMB + LSS + GW

x-axis \sim how much does the graviton interact with DE scalar?

Demanding healthy GW-DE interactions can be used to constrain dark energy

Probing Dark Energy: CMB + LSS + GW

x-axis \sim how much does the graviton interact with DE scalar?

Demanding healthy GW-DE interactions can be used to constrain dark energy

$$\mathcal{L} = G_4(\phi)R + G_2(\phi, X) - G_3(\phi, X) \square \phi$$

$$\mathcal{L} = G_4(\phi)R + G_2(\phi, X)$$

Plethora of upcoming cosmological data:

+ many more.

Plethora of upcoming cosmological data:

+ many more.

Novel theoretical "constraints":

GW-induced constraints

Radiative stability of DE theories

'Positivity' bounds

Plethora of upcoming cosmological data:

euclid

+ many more.

Novel theoretical "constraints":

GW-induced constraints

Radiative stability of DE theories

'Positivity' bounds