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Why search for new LLP at the LHC?

( ) B Sh SM particles span a large range of
m gt . Shuve r .
A l Q D I|fet?|mes — why not BSM particles
1040 ol [ e toor-
1 U O n In SM, particles lifetime usually
- stems from an approximate
U K symmetry which would make the
1 10 T _ B* particle stable. In this case a small
1 T
. K ‘O symmetry breaking parameter
£ | T O On i suppresses the decay rate -> long
10 O (*5(43) H lifetime.
O o
i T : ZQ
ey | | | | | |
2/ | | | | | | e

i%¢ o 2
gzl a2 S 10 M (GeV)




Why search for new LLP at the LHC?

* Many BSM models can naturally lead to LLPs
* More in this mornings talk by M. McCullough

* e.g.in SUSY:

* Weak Couplings
* Example: Weak R-Parity Violating couplings:
* In many cases if the couplings were stronger they would have led to huge observable effects

* Example: Weak gravitino couplings:
* From gravity being such a weak force (SUSY breaking scale)

* Phase space supressed decays

* Example: With a pure Higgsino triplet the lightest chargino is almost deﬁsner_ate with the lightest neutralino. Decay suppresed by
phase space —in this case the chargino decays as y,* -> * y,% and is a (shortlived) LLP

* Decays through heavy mediator particle
* Example: In split SUSY gluino decays to neutralino through very heavy squark

* And more generally Hidden Valley / Dark Sector models can naturally lead to LLPs

* Vector portal (Dark photon)

* Scalar portal (Dark higgs)

* Neutrino portal (Heavy Neutral Leptons)
* Axion portal (Axion Like Particles)



Why search for new LLP at the LHC?

* Another argument is that LLP searches are experimentally difficult, often
requiring non-standard techniques:

* Trigger, Reconstruction, Background Estimation, Evaluation of signal efficiency etc...

* Tends to mean that they are less well covered and (in some sense) are one
of the last places (accessible) BSM could be hiding in the LHC dataset

* For this reason LLP searches are also some of the most fun, as the search is
less “turning the handle” with existing techniques, but rather inventing
new ones...

e Often trying to use the detector beyond what is was designed for!

* Recently a host of new (small and large) dedicated LLP search experiments
have been proposed for the LHC

* Some being realized now!



https://arxiv.org/abs/1903.04497

LLP searches at ATLAS/CMS
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There are a huge number of LLP searches that have

been carried out at ATLAS and CMS. Mostly looking for

new particles with lifetimes in the range 0.01 — 100ns

In ATLAS and CMS the handles to identify LLP or LLP

decays are mostly:

- Timing in calorimeter and/or muon system

- Non-pointing tracks and/or displaced vertices in the
tracker or muon detector

- Highly ionizing track signatures

- Disappearing tracks

- Non-pointing calorimeter showers

| will go into detail on only a few of these (my personal

choices) which | think demonstrate some interesting

points...

LHCb also has an active LLP search programme,
mostly relying on the excellent vertexing capabilities
of the VELO to search for short lifetimes (displaced
vertices close to the collision point).



https://arxiv.org/abs/1903.04497

Covering the full lifetime range

Different lifetimes can lead to very different detector signatures.
For the same model the fraction of decays in different detector systems varies with lifetime.

A suite of searches are need to cover the full lifetime range...
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Covering the full lifetime range

Different lifetimes can lead to very different detector signatures.
For the same model the fraction of decays in different detector systems varies with lifetime.
A suite of searches are often need to cover the full lifetime range...
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Covering the full lifetime range

Different lifetimes can lead to very different detector signatures.

For the same model the fraction of decays in different detector systems varies with lifetime.

A suite of searches are often need to cover the full lifetime range...
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Even re-interpretting ‘prompt’ searches in
LLP scenarios can provide good sensitivity

___— depending on the details of the

requirements on the reconstrucuted
objects.

wwwwwwww

Simulated gluino event with 1ns lifetime



Particular challenges for LLP searches at the LHC

* Triggering
e Especially L1 trigger, usually does not have sufficient information to trigger on LLP
particle/decay
* Instead often use standard ‘prompt’ physics trigger (e.g. ISR jet)
e (Can substantially reduce sensitivity and increase model dependence of result

e Reconstruction

* Non-standard reconstruction needed
* Extra work to optimize this, but not a show stopper

* Background estimatation
* Again, extra work / thinking — but usually not a show stopper

e Data driven estimatation of signal efficiency
* Often not possible, as no SM standard candle giving sufficiently LLP signatures / decay
signatures to use to evaluate the efficiency
e E.g. For prompt lepton can use Z->Il tag and probe to measure the efficiency
* For lepton from LLP decay have to extrapolate efficiency from prompt result using simulation
* (Sometimes can try clever tricks e.g. use cosmic muons to estimate displaced muon efficiency)



Examples of data driven efficiency estimates

Looking at the pointing resolution of
photons in the ATLAS calorimeter, as
a function of Z,,, (the photon origin
point, along the beamline). Can
validate in data using Z->ee decays
for Z,yigin values within the LHC
luminous region. For larger values
need to use simulation.
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Example Searches



Search for displaced verticies from LLP decays

* LLPs with lifetimes in the range 10ps — 10ns that decay hadronically can lead to a displaced vertex in the tracker

* In ATLAS, dedicated Large Radius Tracking is run to find tracks with large impact parameters (using tracker hits not
included on standard tracks). In CMS the standard tracking has good efficiency for such tracks.

* To reduce the large background from hadronic interactions with the detector material, a “material map” is used to
veto vertices where there is material in all experiments

» Selection applied on number of tracks in vertex and mass of vertex

* Main backgrounds from random crossing of tracks and merging of close-by low-mass displaced vertices and are
evaluated from the data
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Search for displaced verticies from LLP decays

* Not possible to trigger (at L1) inclusively on displaced vertex in tracker
* Track triggers at L1 may allow this after the Phase-Il upgrades for HL-LHC

e Searches use prompt physics triggers: lepton, high pT jet(s), MET
* Example result for MET triggered events (MET>250 GeV):

* Very low background expected (0.2,,,%2) with 0 events observed
» Sets very stringent limits on gluino mass (best limits on gluinos from any search!)
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Displaced / Late photons

decaying to a photon and a gravitino

100mm resolution)

point.

In GMSB SUSY models can have long lived neutralino

ATLAS analysis distinguishes signal and background using:
* the time of the photon (~300ps resolution)
* Pointing direction of photon shower along beam line (~20 —

Trigger on photons with loose enough identificantion to
have efficiency for photons originating far from the collision
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M. [GeV]

(meta-)Stable massive charged particles

* Use muon trigger

* Select candidates with large energy loss (dE/dx) in the tracker and large 8
from timing measurements in muon detector

* Background estimated using ABCD method, assuming 8 and dE/dx
uncorrelated for background

e Combine measurements to estimate mass of candidates
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(meta-)Stable massive charged particles:
Example sensitivity

For coloured LLPs limits ~1.2 TeV (stop) - ~1.8 TeV (gluino)

For stau depends on the production model —
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dE/dx [MeV g cm?]

(meta-)Stable massive charged particles:
Extensions

* Coloured LLPs (hadronizing to form R-hadrons) can change electric char
propagation through detector due to interactions with detector materia

%e during

* Use calorimeter timing instead of muon timing to search for candidates which start off charged
but become neutral in the detector

* Change to MET trigger

* Increase sensitivity to lower lifetimes by just using dE/dx measurements (background
estimation becomes more difficult)

* Push to lowest lifetimes using dE/dx of tracklets with only a few pixel hits on them
Radius of first few tracker layers sets accessible lifetime range .
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Disappearing track signature

* [n SUSY the lightest electroweakino states can be nearly
degenerate
* E.g. for wino or higgsino like LSPs
* Small mass splitting supressed decay rate of lightest chargino

~y

(x1") and leads to non-prompt decay

e Can be searched for by looking for a short charged particle
track that disappears with the decay ¥,*-> n* ¥,° (where the
pion is too soft to be detected)

* The analysis:
* Trigger on an ISR jet +MET

* Select events with a high p; high quality short track

* Reject tracks associated to reconstructed leptons or with
associated energy in the calorimeter

* Backgrounds estimated in data control regions (e.g.
Tag&Probe for disappearing lepton tracks that fail veto)




Only 2017/8 data included here.

New CMS pixel detector installed for 2017
running, with extra barrel layer, and closer
inner radius allows shorter liftime

Disappearing track signature e e
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New ideas for improving triggering on LLPs

In many cases the L1 trigger limits LLP search sensitivity

Makes searches more model dependent since often requires additional object in event to trigger on.

New ideas to take into account improvements in trigger hardware introduced for Phase-1 (LS2) and Phase-2

(LS3) upgrades.

Some examples:

- Use timing information in trigger (trigger on slow particles reaching calorimeter of dedicated timing
detector)

- Trigger on large-d, tracks seen in L1 track trigger (as a trigger for displaced vertex analyses)

- Use trigger information from consecutive bunch crossings to improve sensitivity for very slow particles
reaching muon detectors



New ideas for improving triggering on LLPs:
Timing at L1

Understanding how this will be used for LLP trigges at L1 is still work in progress.

But time resolution of 30ps for the CMS MIP Timing Detector, and 25ps for the High Granularity Calorimeter can offer
excellent discrimination between a LLP signal and background — with the information in principle available in the L1
trigger. (HGCal information can also provide calorimeter cluster ‘pointing’ information which can be used at L1).
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New ideas for improving triggering on LLPs:
Large dO tracks at L1

The L1 track trigger in the CMS Phase-2 upgrade makes track stubs corresponding to tracks from the collision
point with pt>2 GeV.

Depending on the available resources, the trigger can have good acceptance for displaced tracks with d,
upto >5cm which could then be used to seed later triggers looking for displaced vertcies in the tracker.
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New ideas for improving triggering on LLPs:

riggering across bunch crossings

The ATLAS L1 muon trigger loses efficiency for heavy particles with | zep1 \M”°“ H
<0.8 since the signals start to come in the next bunch crossing. . Beib2 4 "N
A new trigger has been developed that uses L1 trigger objects in 2
consecutive bunch crossings: The first has a Jet or MET trigger
(from ISR) and the second see’s the signal of the heavy particle in
the Muon detector.
As can be seen in the plots below — this can provide a boost in the
trigger efficiency for e.g. heavy stau’s. jet / MET L1 BCID = 25ns clock tick
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Proposed new LLP experiments at the LHC
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In recent years there have been a number of proposals for new dedicated LLP experiments to be installed at the LHC.
Spanning different regions of forward/transverse space, and very different detector sizes and costs.

Some are being realized now, some in discussion over funding and approval...
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Increasing lifetime

https://arxiv.org/abs/1812.09139

FASER

e FASER is a small experiment (5m x R=0.1m) to search for long lived, light particles
produced in meson decay in the very forward region of LHC collisions (|7]>9.1)

It sits in an unused tunnel T112, ~500m from the ATLAS collision point, and directly
aligned with the beam collision axis

« Covering only (2x10°)% of the solid angle, 2% of n%s (with E>10GeV) are produced in the
FASER angular acceptance

e 10% piOs in LHC Run-3

* For dark sector particles produced very rarely in i° decays (e.g. BF ~ O(10°) FASER can
still detect a significant number of signal events

N
AN 1 v
1 1



https://arxiv.org/abs/1812.09139

https://arxiv.org/abs/1812.09139

FASER

FASER being constructed and installed in LS2 to take data in Run 3. Installation to be completed by Feb 2021.

FASER location in today
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https://arxiv.org/pdf/1901.04040

MATHUSLA

* MATHUSLA is a proposed large detector to sit
close to the surface above CMS to search for
LLP

 100m x 100m x 25m (O(5%) of solid angle)

e Search for neutral LLP decaying to charged
particles in a 20m long decay volume

* Sensitive to particles with very long lifetimes due
to the distance from the IP

e Current design uses scintillating bars for the
tracking detector

* Very low backgrounds due to shielding from IP,
and tracker time measurements

* Current status:

e Small teststand (2.5 x 2.5 x 6.5m) running above
ATLAS

e LOI submitted to LHCC

* May be able to combine data with CMS to allow
more complete picture of LLP production, and to
help with background rejection
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https://arxiv.org/pdf/1911.00481

CODEX-b

* Proposed medium sized experiment to be situated

close to LHCb

e ~25m from LHCb IP (behind active and passive shielding)
* Detector size 10m x 10m x 10m

* Baseline design uses RPCs for tracking with good
(100ps) timing resolution for background rejection

e Construction of a small (2m x 2m x 2m) demonstrator
CODEX- under consideration
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Summary

* A number of well motivated new physics models predict LLPs

* Leads to many searches for LLPs at the LHC
e Rapidly expanding field
* Analyses continually pushing the sensitvity in both the short and long lifetime limits as well
as trying to reduce the model dependence of the results

* Analyses usually quite different from prompt searches
* Non-standard reconstruction
» Different backgrounds
* Hard to validate the signal efficiency estimate

* Biggest challenge is often the L1 trigger
* Improvements expected with new functionailty in Phase-1 and Pase-2 upgrades

* A number of new dedicated LLP experiments for the LHC have been proposed

* Covering different scenarios and lifetimes
* Aim to maximize the physics output of the LHC machine in the HL-LHC era



Some useful references...

* The LHC LLP Community white paper:
* https://arxiv.org/abs/1903.04497

e ATLAS public result page:
e https://twiki.cern.ch/twiki/bin/view/AtlasPublic

* CMS public results page:

* http://cms-results.web.cern.ch/cms-results/public-results/publications/

* LLP at the LHC workshop next week:
* https://indico.cern.ch/event/922632/
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Backup...
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Beam background

 Beam background can be an important background for LLP searches

* Beam background events can be identified by timing, pointing and
location of the hits (mostly in muon system of calorimeter)

Location of muon hits from beam background Timing / position O,f recon;tructed Jets from
beam background in calorimeter

tclus [ns]

expected

35
clus Zelus» 1.5< Feus < 2 m) chus [m]



