Boundaries, Vermas, and Factorisation

Daniel Zhang, DAMTP, University of Cambridge

Based on 2010.09741 with M. Bullimore, S. Crew and 2010.09732 with S.Crew and N. Dorey

Background and Motivation

Partition Function (Witten Index)

Characters of quantum algebras acting on BPS States

Representation Theory

$\{Q, Q^{\dagger}\} = H$

 $\operatorname{Tr}_{\mathscr{H}}(-)^{F}e^{-\beta\{Q,Q^{\dagger}\}}x^{J}$

 $\mathcal{X}(\mathcal{QM})[x]$

(Equivariant) indices/ invariants on moduli spaces (of solitons)

Enumerative Geometry

Outline

- Background on $3d \mathcal{N} = 4$
- Moduli spaces of vacua and chiral algebras
- Boundary conditions and modules
- Exceptional Dirichlet and Verma modules
- Half Indices, $S^1 \times H^2$ Partition Functions
- Factorisation and IR Formulae

$3d \mathcal{N} = 4$ Theories

- 8 supercharge theory Q^{aa}_{α}
- R-symmetry group $SU(2)_H \times SU(2)_C \supset R_H \times R_C$
- Fix a gauge group G
- 2 types of multiplets:
 - Hypermultiplets: $(X_i, Y_i), i = 1,...,N$
 - Vector multiplet: $(A_{\mu}, \sigma, \varphi)$
- Deformations: $\overrightarrow{m} \in \mathfrak{t}_{H}, \ \overrightarrow{\eta} \in \mathfrak{t}_{C}$.
- We'll stick to Lagrangian theories which flow in the UV to SCFTs.

Global symmetry G_H Global symmetry G_C

Example: SQED[N] Our favourite theory

SQED[N] - Supersymmetric QED with N hypermultiplets

- $\mathbf{\nabla}_{H}$

• A G = U(1) vector multiplet $(A_{\mu}, \sigma, \varphi)$

• N hypermultiplets $(X_i, Y_i), i = 1, ..., N$ transforming in the fundamental of G

$$PSU(N)$$
, $G_C = U(1)$

Moduli Spaces of Vacua

In general, the vacuum moduli space complicated. Work with two distinct 'branches'.

Higgs Branch \mathcal{M}_H Hypermultiplet scalars (*X*, *Y*) get VEVs

Classically:

$$\mu_{\mathbb{R}} = X \cdot X^{\dagger} - Y \cdot Y^{\dagger}$$
$$\mu_{\mathbb{C}} = X \cdot Y$$
$$\mathcal{M}_{H} = \{\mu_{\mathbb{C}}^{-1}(\eta_{\mathbb{C}}) \cap \mu_{\mathbb{R}}^{-1}(\eta_{\mathbb{R}})\}/G$$

Hyperkähler reduction

Protected via non-renormalisation theorems so the classical computation is exact.

Turning on masses $m_{\mathbb{R}}$ restricts vacua to fixed points of tri-Hamiltonian isometry G_H .

Coulomb branch \mathcal{M}_C

Scalars σ, φ and also periodic scalar γ dual to the photon A get VEVs.

Classically:

 $\mathcal{M}_C = (\mathbb{R}^3 \times S^1)^{\mathsf{rk}G} / \mathsf{Weyl}(G)$

Receives 1-loop quantum corrections. For SQED[N], this is the N-centered Taub-NUT space

SUSY algebra guarantees still Hyperkähler

Turning on FI $\eta_{\mathbb{R}}$ restricts vacua to fixed points of tri-Hamiltonian isometry G_C

Algebras of Chiral Operators

- Operators which parametrise vacuum manifolds are annihilated by 2 supercharges. Call them chiral.
 - Higgs operators $Q_{+}^{1\dot{1}}, Q_{-}^{1\dot{2}}$. Coulomb operators $Q_{+}^{1\dot{1}}, Q_{-}^{2\dot{1}}$
 - By SCFT unitary bound arguments, we can just consider the cohomology of $Q_H = Q_+^{1\dot{1}} + Q_-^{1\dot{2}}$ and $Q_C = Q_+^{1\dot{1}} + Q_-^{2\dot{1}}$.
- Translation is Q-exact: $\frac{\partial}{\partial x} \approx \{Q, \tilde{Q}\}.$
- Chiral algebras are just the coordinate rings of the moduli spaces of vacua. $\mathbb{C}[\mathscr{M}_H]$ and $\mathbb{C}[\mathscr{M}_C]$.
- Explicitly: $\mathbb{C}[\mathcal{M}_H] = \mathbb{C}[X^i, Y^i]^G / (\mu_{\mathbb{C}} \eta_{\mathbb{C}})$. Complex symplectic reduction of free ring.
- Coulomb branch is more difficult. Need to determine ring relations, Poisson bracket etc. Done in [Bullimore, Dimofte, Gaiotto]. Mathematically: [Braverman, Finkelberg, Nakajima].

Omega Deformation and Quantised Algebras

- Ω -deformation: deform such that $Q_{H,C}^2 = \epsilon \mathscr{L}_V.$
- V is the Killing vector generating rotations • about an axis in \mathbb{R}^3
- Localises to a quantum mechanics: a nonlacksquarelinear σ -model to either the Higgs or Coulomb branch [Yagi].
- Operator ordering now matters. We are \bullet lead to quantised algebras $\widehat{\mathbb{C}}[\mathcal{M}_H]$ and $\hat{\mathbb{C}}[\mathscr{M}_C]$, which are non-commutative. Puts some hats on the operators.

Example: SQED[N]

Higgs Branch $\mathcal{M}_H = T^* P^{N-1}$

Classically: $\mathbb{C}[\mathcal{M}_H] = \mathbb{C}[T^*P^{N-1}]$

Quantised algebra: $\{Y_i, X_j\}_{PB} \mapsto [\hat{Y}_i, \hat{X}_j] = \epsilon$, i, j = 1, ..., N

Gauge invariant generators:

$$\begin{array}{l} h_{j} = \hat{X}_{j}\hat{Y}_{j} - \hat{X}_{j+1}\hat{Y}_{j+1} ,\\ e_{j} = \hat{X}_{j}\hat{Y}_{j+1} \quad j = 1, \dots, N-1 ,\\ f_{j} = \hat{X}_{j+1}\hat{Y}_{j} \quad j = 1, \dots, N-1 . \end{array} \right\} \quad U(\mathfrak{Sl}_{N}) \\ \\ \text{Impose complex moment map:} \quad \sum_{j=1}^{N} : \hat{X}_{j}\hat{Y}_{j} := \eta_{\mathbb{C}} \end{array}$$

Fixes Casimirs, so $\hat{\mathbb{C}}[\mathscr{M}_{H}]$ is a central quotient of $U(\mathfrak{sl}_{N})$

Coulomb Branch \mathcal{M}_C

Unresolved: A_{N-1} singularity

Classically, \mathcal{M}_C : $v^+v^- = \varphi^N$

Quantised algebra:

$$\begin{split} [\hat{\varphi}, \hat{v}_{\pm}] &= \pm \epsilon \hat{v}_{\pm}, \\ \hat{v}_{+} \hat{v}_{-} &= \prod_{i=1}^{N} \left(\varphi + m_{i,\mathbb{C}} - \frac{\epsilon}{2} \right), \\ \hat{v}_{-} \hat{v}_{+} &= \prod_{i=1}^{N} \left(\varphi + m_{i,\mathbb{C}} + \frac{\epsilon}{2} \right), \end{split}$$

which is a spherical rational Cherednik algebra.

Boundary Conditions and Modules

- Enrich the set-up by introducing $\mathcal{N}=(2,2)$ boundary conditions on \mathbb{R}^2 . Identify $R_H=R_V,\ R_C=R_A$
- Certain fields/operators are supported by the boundary condition. Both Coulomb and Higgs branch operators.
- Turning on an $\Omega_{H,C}$ -deformation (Higgs or Coulomb) we get a module of $\hat{\mathbb{C}}[\mathscr{M}_H]$ or $\hat{\mathbb{C}}[\mathscr{M}_C]$, by bringing bulk operators to the boundary [Bullimore, Dimofte, Gaiotto, Hilburn].
- There can be boundary 't Hooft anomalies. For a $3d \ \mathcal{N} = 4$ theory, the only possibilities are the following mixed anomalies:

$$T_H - T_C, \quad T_H - R_A, \quad T_C - R_V, \quad R_V - R_A$$

k, k_A, k_V, k_V

 $= \mathcal{O}^{\text{bulk}} | \mathcal{O}^{\text{bdy}} \rangle$

Exceptional Dirichlet and Verma Modules

- Turning on $m_{\mathbb{R}}, \eta_{\mathbb{R}}$, we have distinct, isolated vacua α .
- $m_{\mathbb{R}}, \eta_{\mathbb{R}}$. Preserves $T_H \times T_C$ 'exceptional'.
- condition is the attracting Lagrangian \mathscr{L}_{α} of the fixed point $\alpha \in \mathscr{M}_{H}$.
- Also impose $A_{\parallel} = 0$ 'Dirichlet', this supports boundary monopole operators.

• Focus on special class of BC, 'thimbles', which mimic a vacuum α at infinity for a choice of chamber of

• (2,2) BPS equations at boundary are Morse flow, with respect to Morse function e.g. $m_{\mathbb{R}} \cdot \mu_{H,\mathbb{R}}$.

• We choose a Lagrangian splitting of the hyper-multiplets X^i, Y^i such that the image of the boundary

Exceptional Dirichlet and Verma Modules

- [Bullimore, Dimofte, Gaiotto, Hilburn] argue on general grounds this yields lowest weight Verma modules $\mathscr{V}_{\alpha}^{H,C}$ for $\widehat{\mathbb{C}}[\mathscr{M}_{H,C}]$, for each vacuum. Lowest weight is w.r.t. e.g. $\hat{\mu}_{H,\mathbb{C}}$.
- We find the charge of the lowest weight state is given by the anomalies induced by the boundary condition:

$$\hat{\mu}_{H,\mathbb{C}} | \mathscr{B} \rangle^{H} = \left(\frac{1}{2} k_{A} + \frac{1}{\epsilon} \eta_{\mathbb{C}} \cdot k \right) | \mathscr{B} \rangle^{H}$$
$$\hat{\mu}_{C,\mathbb{C}} | \mathscr{B} \rangle^{C} = \left(\frac{1}{2} k_{V} + \frac{1}{\epsilon} \eta_{\mathbb{C}} \cdot k \right) | \mathscr{B} \rangle^{C}$$

Example: SQED[N]

Higgs \mathcal{M}_H . Fix a chamber $m_{\mathbb{R},1} < \ldots < m_{\mathbb{R},N}$.

Thimble boundary condition for i^{th} vacuum is:

$$\begin{array}{ll} \partial_{\perp}Y_{j}=0, & X_{j}=c\delta_{ij} & j\leq i\\ \partial_{\perp}X_{j}=0, & Y_{j}=0 & j>i \,. \end{array}$$

module is represented by 1. Identifying generating set of raising operators:

We measure weights with respect to
$$h_m := \sum_{j=1}^N m_j : \hat{\mu}_{H,j,\mathbb{C}} := \sum_{j=1}^N m_j : \hat{X}_j \hat{Y}_j :$$
 On the vacue $h_m | \mathscr{B}_i \rangle = \left[\frac{\epsilon}{2} \left(\sum_{j>i} (m_j - m_i) - \sum_{j$

The coefficients of the fugacities precisely encodes the boundary 't Hooft anomalies induced by the boundary condition. For example, the $m_i \eta_{\mathbb{C}}$ term precisely encodes the mixed Higgs/Coulomb branch flavour symmetry anomaly.

The quantisation of the bulk operators acts as:

$$\begin{split} \hat{Y}_j &= \times Y_j, \qquad \hat{X}_j = \epsilon \partial_{Y_j} + c \delta_{ij} \qquad j \le i \\ \hat{X}_j &= \times X_j, \qquad \hat{Y}_j = \partial_{X_j} \qquad j > i \,. \end{split}$$

The states in the module are polynomials in the scalars assigned Neumann BC. The lowest weight state $|\mathscr{B}_i\rangle$ associated to this ~ ~

$$f_{i,j} = \hat{X}_i \hat{Y}_j \qquad j < i$$
$$f_{k,j} = \hat{X}_k \hat{Y}_i \qquad k < i$$

ium:

Half Indices

 $\mathscr{I}_{\mathscr{B}_{\alpha}} = \mathsf{Tr}(-1)^{F} q^{J + \frac{R_{V} + R_{A}}{4}} t^{\frac{R_{V} - R_{A}}{2}} x^{F_{H}} \xi^{F_{C}},$

- Associated to a given boundary condition \mathscr{B}_{α} .
- A count of boundary operators in $Q_{+}^{1\dot{1}}$ cohomology. Includes Higgs and Coulomb branch chiral operators, but also many others.
- Gradings by Higgs and Coulomb branch flavour symmetries, and also particular combinations of boundary R-symmetries which commute with the supercharge.
- Starts at 1 the identity operator is uncharged.
- Derived in [Dimofte, Gaiotto, Paquette]

Hemisphere Partition Function

- Alternatively, via state-operator correspondence, we compute the partition function on $S^1 \times H^2$. The boundary condition \mathscr{B}_{α} for a vacuum α is imposed on the boundary T^2 .
- Counts states on a hemisphere, annihilated by $Q_{+}^{1\dot{1}}$.
- Compute via supersymmetric localisation. For a Dirichlet boundary condition on the vector multiplet: BPS configurations are monopole configurations on the hemisphere.

$$\mathcal{E}_{\mathscr{B}_{\alpha}}^{S^{1}\times H^{2}} = \lim_{\delta \to \infty} \int \mathscr{D}\Phi e^{-S[\Phi] - \delta Q \cdot V[\Phi]}$$
$$= \sum_{\mathfrak{m} \in \mathbb{Z}^{k}} e^{-S} \mathrm{cl}^{[\Phi^{(0)}]} Z_{1-\mathrm{loop}}(q, z)$$

• Related to half index by a 'Casimir energy' e^{ϕ} .

 $z, x, \xi, \mathfrak{m}),$

Casimir Energies, Boundary 't Hooft Anomalies

- $\mathscr{Z}^{S^1 \times H^2}_{\mathscr{B}_{\alpha}} = e^{\phi_{\mathscr{R}}}$
- true for $\mathcal{N} = 2$ theories too).

 $\phi_{\mathscr{B}} = \frac{1}{\log q} \left[\log q \right]$ $+\frac{1}{\log q}\left[\log q\right]$ $+\frac{1}{\log q}\left[\log q\right]$ $+\frac{1}{\log q}\left[\log\xi\cdot k\cdot\log x\right]$

Kim].

$$\mathcal{F}_{\alpha}\mathcal{J}_{\mathcal{B}_{\alpha}} = e^{\phi_{\mathcal{B}_{\alpha}}}\mathcal{Z}_{1-loop}\mathcal{Z}_{V}$$

Casimir Energy is exactly the anomaly polynomial for the boundary 't Hooft anomaly (actually

$$g\left(q^{1/4}t^{1/2}\right) \cdot \tilde{k} \cdot \log\left(q^{1/4}t^{-1/2}\right) \Big]$$

$$= \left(q^{1/4}t^{-1/2}\right) \cdot k_A \cdot \log x \Big]$$

$$= \xi \cdot k_V \cdot \log\left(q^{1/4}t^{1/2}\right) \Big]$$

• For an empty bulk, this is just the statement on (2,2) elliptic genera in [Bobev, Bullimore,

Higgs and Coulomb Character Limits

Additional commuting supercharge Q_{-}^{12}

 $\mathscr{X}^{H}_{\mathscr{B}_{\alpha}}(x) = \operatorname{Tr}_{\mathscr{H}^{H}_{\mathscr{B}_{\alpha}}} x^{J_{H}}$

$$e^{\phi_{\mathscr{B}_{\alpha}}} \to x^{\frac{k_{A}}{2} + k \cdot \frac{\log \xi}{\log q}}$$

 $\mathscr{Z}_{1-loop} \rightarrow$ Verma character denominator $\mathcal{Z}_V \to 1$

In both cases: the limit of the Casimir energy precisely yields the character of the highest weight states of the respective Vermas! ($\log q \rightarrow \epsilon$). This was missing from the half-index.

 $\mathscr{Z}_{\mathscr{B}_{\alpha}}^{S^{1}\times H^{2}} = e^{\phi_{\mathscr{B}_{\alpha}}}\mathscr{I}_{\mathscr{B}_{\alpha}} = e^{\phi_{\mathscr{B}_{\alpha}}}\mathscr{Z}_{1-loop}\mathscr{Z}_{V}$

Additional commuting supercharge Q_{-}^{21}

lim

 $t \rightarrow q^{\frac{1}{2}}$

$$\mathscr{X}^{C}_{\mathscr{B}_{\alpha}}(x) = \mathrm{Tr}_{\mathscr{H}^{C}_{\mathscr{B}_{\alpha}}} \xi^{J_{C}}$$

$$e^{\phi_{\mathscr{B}_{\alpha}}} \to \xi^{\frac{k_{V}}{2} + k \cdot \frac{\log x}{\log q}}$$
$$\mathscr{Z}_{1-loop} \to 1$$
$$\mathscr{Z}_{V} \to \text{Verma character denominator}$$

Example: SQED[N]

For the i^{th} vacuum, and Thimble boundary condition B_i :

$$\begin{aligned} \mathscr{X}_{i}^{H} &= \lim_{t \to q^{-\frac{1}{2}}} \mathscr{Z}_{\mathscr{B}_{i}} = e^{\frac{10}{2}} \\ k, \text{ mixed } T_{H} - T_{C} \\ \\ \\ \mathscr{X}_{i}^{C} &= \lim_{t \to q^{\frac{1}{2}}} \mathscr{Z}_{\mathscr{B}_{i}} = \end{aligned}$$

Holomorphic Factorisation

partially:

Partition functions of $\mathcal{N} \geq 2$ theories on closed 3-manifolds have been shown to factorise, at least

Holomorphic blocks [Beem, Dimofte, Pasquetti] yields fairly systematic approach, but is an IR calculation. H_{α} there identified with partition function on infinite cigar obtained by stretching a hemisphere geometry. No exact deformation of M_3 into two copies of cigar geometry exists, and ambiguity in the classical piece.

Holomorphic Factorisation

mimic a vacuum at infinity, for $\mathcal{N} = 4$ theories we propose our basis of exact factorisation (incl. classical pieces)!

 Motivated by the fact that UV exceptional Dirichlet/ thimble boundary conditions hemisphere partition functions associated to vacua as the blocks. We find an

 $H_{\alpha} = \mathscr{F}_{\mathscr{B}}$

IR Formulae

function) can be expressed in terms of Verma characters!

 $\mathscr{Z}_{SC}^{B} = \sum_{\alpha} \chi_{\alpha}^{H}(x) \chi_{\alpha}^{H}(x^{-1})$ $\mathscr{Z}_{SC}^{A} = \sum_{\alpha} \chi_{\alpha}^{C}(\xi) \chi_{\alpha}^{C}(\xi^{-1})$

Corollary: Various limits of closed 3-manifold partition functions (such as the superconformal index, twisted index and squashed ellipsoid S_h^3 partition

[Gaiotto, Okazaki] $\mathscr{Z}_{S_b^3} = \sum_{\alpha} \chi_{\alpha}^H(x) \chi_{\alpha}^C(\xi)$

$$\mathcal{Z}_{tw}^{B} = \sum_{\alpha} \chi_{\alpha}^{H}(x) \chi_{\alpha}^{H}(x)$$
$$\mathcal{Z}_{tw}^{A} = \sum_{\alpha} \chi_{\alpha}^{C}(\xi) \chi_{\alpha}^{C}(\xi)$$

Other aspects & future directions

- Non-abelian examples, e.g. 3d ADHM [Crew, Dorey, DZ]
- duals.
- Enumerative geometry vortex moduli spaces
- of boundary conditions and modules.

Leverage factorisation/mathematical understanding of these halfindices to evaluate large N and Cardy limits - these should yield entropy functionals for black hole microstates for theories with AdS

• The elliptic stable envelopes [Aganagic, Okounkov]. Mirror symmetry

