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  Theories3d 𝒩 = 4
• 8 supercharge theory 


• R-symmetry group  


• Fix a gauge group 


• 2 types of multiplets: 


• Hypermultiplets:  ,          Global symmetry 


• Vector multiplet:                          Global symmetry 


• Deformations: , . 


• We’ll stick to Lagrangian theories which flow in the UV to SCFTs.

𝒬a ·a
α

SU(2)H × SU(2)C ⊃ RH × RC

G

(Xi, Yi) i = 1,...,N GH

(Aμ, σ, φ) GC

⃗m ∈ 𝔱H ⃗η ∈ 𝔱C



Example: SQED[N]
Our favourite theory

1

N

SQED[N] - Supersymmetric QED with N 
hypermultiplets


• A  vector multiplet     

  

• N hypermultiplets  ,  

transforming in the fundamental of 


•  ,  

G = U(1) (Aμ, σ, φ)

(Xi, Yi) i = 1,..., N
G

GH = PSU(N) GC = U(1)



Moduli Spaces of Vacua
In general, the vacuum moduli space complicated. Work with two distinct ‘branches’.

Higgs Branch 

Hypermultiplet scalars  get VEVs


Classically:

ℳH
(X, Y )

Coulomb branch 

Scalars  and also periodic scalar  dual to the 

photon  get VEVs.


Classically:

ℳC
σ, φ γ

A

Hyperkähler reduction


Protected via non-renormalisation theorems so the 
classical computation is exact.


Turning on masses  restricts vacua to fixed points of 
tri-Hamiltonian isometry . 

mℝ
GH

μℝ = X ⋅ X† − Y ⋅ Y†

μℂ = X ⋅ Y
ℳH = {μ−1

ℂ (ηℂ) ∩ μ−1
ℝ (ηℝ)}/G

Receives 1-loop quantum corrections. For 
SQED[N], this is the N-centered Taub-NUT space


SUSY algebra guarantees still Hyperkähler


Turning on FI  restricts vacua to fixed points of 
tri-Hamiltonian isometry 

ηℝ
GC

ℳC = (ℝ3 × S1)rkG /Weyl(G)



Algebras of Chiral Operators

• Operators which parametrise vacuum manifolds are annihilated by 2 supercharges. Call them chiral. 


• Higgs operators . Coulomb operators 


• By SCFT unitary bound arguments, we can just consider the cohomology of  and 
. 


• Translation is Q-exact: .


• Chiral algebras are just the coordinate rings of the moduli spaces of vacua.  and .


• Explicitly:  =  . Complex symplectic reduction of free ring.


• Coulomb branch is more difficult. Need to determine ring relations, Poisson bracket etc. Done in [Bullimore, 
Dimofte, Gaiotto]. Mathematically: [Braverman, Finkelberg, Nakajima].

Q1 ·1
+ , Q1 ·2

− Q1 ·1
+ , Q2 ·1

−

QH = Q1 ·1
+ + Q1 ·2

−
QC = Q1 ·1

+ + Q2 ·1
−

∂
∂x

≈ {Q, Q̃}

ℂ[ℳH] ℂ[ℳC]

ℂ[ℳH] ℂ[Xi, Yi]G /(μℂ − ηℂ)



Omega Deformation and Quantised Algebras

• -deformation: deform such that 
.


•  is the Killing vector generating rotations 
about an axis in 


• Localises to a quantum mechanics: a non-
linear -model to either the Higgs or 
Coulomb branch [Yagi].


• Operator ordering now matters. We are 
lead to quantised algebras   and 

, which are non-commutative. 
Puts some hats on the operators. 

Ω
Q2

H,C = ϵℒV

V
ℝ3

σ

ℂ̂[ℳH]
ℂ̂[ℳC]

ϵ 𝒪1𝒪2



Example: SQED[N]

Higgs Branch 


Classically: 


Quantised algebra: , 



Gauge invariant generators:    


        


Impose complex moment map:  


Fixes Casimirs, so  is a central quotient of 

ℳH = T*PN−1

ℂ[ℳH] = ℂ[T*PN−1]

{Yi, Xj}PB ↦ [ ̂Yi, X̂j] = ϵ
i, j = 1,...,N

hj = X̂j
̂Yj − X̂j+1

̂Yj+1 ,

ej = X̂j
̂Yj+1 j = 1,…, N − 1 ,

fj = X̂j+1
̂Yj j = 1,…, N − 1 .

U(𝔰𝔩N)

N

∑
j=1

:X̂j
̂Yj: = ηℂ

ℂ̂[ℳH] U(𝔰𝔩N)

Coulomb Branch  


Unresolved:   singularity


Classically,  :     


Quantised algebra:


 


which is a spherical rational Cherednik algebra.

ℳC

AN−1

ℳC v+v− = φN

[φ̂, ̂v±] = ± ϵ ̂v± ,

̂v+ ̂v− =
N

∏
i=1

(φ + mi,ℂ −
ϵ
2 ) ,

̂v− ̂v+ =
N

∏
i=1

(φ + mi,ℂ +
ϵ
2 ) ,



Boundary Conditions and Modules
• Enrich the set-up by introducing  boundary 

conditions on  . Identify 


• Certain fields/operators are supported by the boundary 
condition. Both Coulomb and Higgs branch operators. 


• Turning on an -deformation (Higgs or Coulomb) - we get 
a module of  or , by bringing bulk operators to 
the boundary [Bullimore, Dimofte, Gaiotto, Hilburn].


• There can be boundary ’t Hooft anomalies. For a   
theory, the only possibilities are the following mixed anomalies:

𝒩 = (2,2)
ℝ2 RH = RV , RC = RA

ΩH,C
ℂ̂[ℳH] ℂ̂[ℳC]

3d 𝒩 = 4

= 𝒪bulk |𝒪bdy⟩
 ,    ,    ,    TH − TC TH − RA TC − RV RV − RA

       ,               ,              ,              k kA kV k̃



Exceptional Dirichlet and Verma Modules

• Turning on , we have distinct, isolated vacua . 


• Focus on special class of BC, ’thimbles’, which mimic a vacuum  at infinity for a choice of chamber of 
 . Preserves  - ‘exceptional’.


• (2,2) BPS equations at boundary are Morse flow, with respect to Morse function e.g.  .


• We choose a Lagrangian splitting of the hyper-multiplets    such that the image of the boundary 
condition is the attracting Lagrangian  of the fixed point . 


• Also impose  = 0 - ‘Dirichlet’, this supports boundary monopole operators.

mℝ, ηℝ α

α
mℝ, ηℝ TH × TC

mℝ ⋅ μH,ℝ

Xi, Yi

ℒα α ∈ ℳH

A∥



Exceptional Dirichlet and Verma Modules

• [Bullimore, Dimofte, Gaiotto, Hilburn] argue on general grounds this 
yields lowest weight Verma modules  for , for each 
vacuum. Lowest weight is w.r.t. e.g.  .


• We find the charge of the lowest weight state is given by the 
anomalies induced by the boundary condition:

𝒱H,C
α ℂ̂[ℳH,C]

̂μH,ℂ

̂μH,ℂ |ℬ⟩H = ( 1
2

kA +
1
ϵ

ηℂ ⋅ k) |ℬ⟩H

̂μC,ℂ |ℬ⟩C = ( 1
2

kV +
1
ϵ

ηℂ ⋅ k) |ℬ⟩C



Example: SQED[N]

We measure weights with respect to   .  On the vacuum:hm :=
N

∑
j=1

mj : ̂μH,j,ℂ: =
N

∑
j=1

mj :X̂j
̂Yj:

 Thimble boundary condition for  vacuum is:


 


ith

∂⊥Yj = 0, Xj = cδij j ≤ i
∂⊥Xj = 0, Yj = 0 j > i .

The quantisation of the bulk operators acts as:


 
̂Yj = × Yj , X̂j = ϵ∂Yj

+ cδij j ≤ i

X̂j = × Xj , ̂Yj = ∂Xj
j > i .

Higgs . Fix a chamber .ℳH mℝ,1 < … < mℝ,N

The states in the module are polynomials in the scalars assigned Neumann BC. The lowest weight state  associated to this 
module is represented by 1. Identifying generating set of raising operators: 

|ℬi⟩

fi,j = X̂i
̂Yj j < i

fk,j = X̂k
̂Yi k < i

hm |ℬi⟩ =
ϵ
2 ∑

j>i

(mj − mi) − ∑
j<i

(mj − mi) + ηℂmi |ℬi⟩

The coefficients of the fugacities precisely encodes the boundary ’t Hooft anomalies induced by the boundary condition. 
For example, the  term precisely encodes the mixed Higgs/Coulomb branch flavour symmetry anomaly. miηℂ



Half Indices

• Associated to a given boundary condition .


• A count of boundary operators in  cohomology. Includes Higgs and 
Coulomb branch chiral operators, but also many others.


• Gradings by Higgs and Coulomb branch flavour symmetries, and also 
particular combinations of boundary R-symmetries which commute with the 
supercharge. 


• Starts at 1 - the identity operator is uncharged. 


• Derived in [Dimofte, Gaiotto, Paquette]

ℬα

Q1 ·1
+

ℐℬα
= Tr(−1)FqJ+ RV + RA

4 t
RV − RA

2 xFHξFC ,



Hemisphere Partition Function
• Alternatively, via state-operator correspondence, we compute 

the partition function on . The boundary condition  
for a vacuum  is imposed on the boundary . 


• Counts states on a hemisphere, annihilated by .


• Compute via supersymmetric localisation. For a Dirichlet 
boundary condition on the vector multiplet: BPS configurations 
are monopole configurations on the hemisphere. 





• Related to half index by a ‘Casimir energy’ .

S1 × H2 ℬα
α T2

Q1 ·1
+

𝒵S1×H2

ℬα
= lim

δ→∞ ∫ 𝒟Φe−S[Φ]−δQ⋅V[Φ]

= ∑
𝔪∈ℤk

e−Scl[Φ
(0)]Z1-loop(q, z, x, ξ, 𝔪),

eϕ



Casimir Energies, Boundary ’t Hooft Anomalies

• Casimir Energy is exactly the anomaly polynomial for the boundary ’t Hooft anomaly (actually 
true for  theories too).


• For an empty bulk, this is just the statement on  elliptic genera in [Bobev, Bullimore, 
Kim].

𝒩 = 2

(2,2)

ϕℬ =
1

log q [log (q1/4t1/2) ⋅ k̃ ⋅ log (q1/4t−1/2)]
+

1
log q [log (q1/4t−1/2) ⋅ kA ⋅ log x]

+
1

log q [log ξ ⋅ kV ⋅ log (q1/4t1/2)]
+

1
log q [log ξ ⋅ k ⋅ log x]

𝒵S1×H2

ℬα
= eϕℬαℐℬα

= eϕℬα𝒵1−loop𝒵V



Higgs and Coulomb Character Limits

In both cases: the limit of the Casimir energy precisely yields the character of the highest weight 
states of the respective Vermas! ( ). This was missing from the half-index.log q → ϵ

𝒳H
ℬα

(x) = TrℋH
ℬα

xJH 𝒳C
ℬα

(x) = TrℋC
ℬα

ξJC

lim
t→q− 1

2

Additional commuting 

supercharge Q1 ·2

−

lim
t→q

1
2

Additional commuting 

supercharge Q2 ·1

−



Verma character denominator


 

eϕℬα → x
kA
2 +k ⋅ log ξ

log q

𝒵1−loop →
𝒵V → 1



1


Verma character denominator

eϕℬα → ξ
kV
2 +k ⋅ log x

log q

𝒵1−loop →
𝒵V →

𝒵S1×H2

ℬα
= eϕℬαℐℬα

= eϕℬα𝒵1−loop𝒵V



Example: SQED[N]
For the  vacuum, and Thimble boundary condition  : ith Bi

𝒳C
i = lim

t→q
1
2

𝒵ℬi
= e

log ξ log(xi)
log q

ξ
1
2

1 − ξ

𝒳H
i = lim

t→q− 1
2

𝒵ℬi
= e

log ξ log(xi)
log q ∏

j<i

(xi/xj)
1/2

1 − xi/xj ∏
j>i

(xj /xi)
1/2

1 − xj /xi

Verma character denominators 

~ bulk raising operators

, mixed  anomalykA TH − RA

, mixed  anomalyk TH − TC
, mixed  anomalykV TC − RV



Holomorphic Factorisation
• Partition functions of  theories on closed 3-manifolds have been shown to factorise, at least 

partially:
𝒩 ≥ 2

ℳ3 = (S1 × H2) ∪g (S1 × H2)

𝒵ℳ3
≃ ∑

α

HαH̃α

• Holomorphic blocks [Beem, Dimofte, Pasquetti] yields fairly systematic approach, but is an IR calculation. 
 there identified with partition function on infinite cigar obtained by stretching a hemisphere geometry. No 

exact deformation of  into two copies of cigar geometry exists, and ambiguity in the classical piece.
Hα

ℳ3

×g ∈ SL(2,ℤ)×



Holomorphic Factorisation
• Motivated by the fact that UV exceptional Dirichlet/ thimble boundary conditions 

mimic a vacuum at infinity, for  theories we propose our basis of 
hemisphere partition functions associated to vacua as the blocks. We find an 
exact factorisation (incl. classical pieces)!

𝒩 = 4

Hα = 𝒵ℬα
×

S1

T2

ℬαBoundary Condition



IR Formulae
• Corollary: Various limits of closed 3-manifold partition functions (such as the 

superconformal index, twisted index and squashed ellipsoid  partition 
function) can be expressed in terms of Verma characters!

S3
b

𝒵S3
b

= ∑
α

χH
α (x)χC

α (ξ)

𝒵B
SC = ∑

α

χH
α (x)χH

α (x−1)

𝒵A
SC = ∑

α

χC
α (ξ)χC

α (ξ−1)

𝒵B
tw = ∑

α

χH
α (x)χH

α (x)

𝒵A
tw = ∑

α

χC
α (ξ)χC

α (ξ)

[Gaiotto, Okazaki]



Other aspects & future directions
• Non-abelian examples, e.g. 3d ADHM [Crew, Dorey, DZ]


• Leverage factorisation/mathematical understanding of these half-
indices to evaluate large N and Cardy limits - these should yield 
entropy functionals for black hole microstates for theories with AdS 
duals.


• Enumerative geometry - vortex moduli spaces


• The elliptic stable envelopes [Aganagic, Okounkov]. Mirror symmetry 
of boundary conditions and modules.

1N


