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o Half Indices, S! x H? Partition Functions

e Factorisation and IR Formulae



3d V' = 4 Theories

» 8 supercharge theory @%“
« R-symmetry group SU2)y; X SU(2)r D Ry X R
» Fix a gauge group G
e 2 types of multiplets:
» Hypermultiplets: (X, Y),i=1,...,.N Global symmetry Gy

X
- Vector multiplet: (A, 0, @) Global symmetry G-

» Deformations: m € t,;, 7 € t-

 We'll stick to Lagrangian theories which flow in the UV to SCFTs.



Example: SQED][N]

Our favourite theory

SQEDIN] - Supersymmetric QED with N

@ hypermultiplets

+ AG = U(1) vector multiplet (A, o, )

» N hypermultiplets (X, Y,),1=1,....,N
N transforming in the fundamental of G

. G, = PSUNN), G.= U(1)



Moduli Spaces of Vacua

In general, the vacuum moduli space complicated. Work with two distinct ‘branches’.

Higgs Branch ./ Coulomb branch ./ -
Hypermultiplet scalars (X, Y) get VEVs Scalars o, @ and also periodic scalar y dual to the
| photon A get VEVSs.
Classically:
e =X-X"-v. vt Classically:
pe=X-Y M = (R? x $HKG/Weyl(G)

My = {puc (o) N pg' (1)} G

Hyperkahler reduction Receives 1-loop quantum corrections. For
SQEDIN], this is the N-centered Taub-NUT space
Protected via non-renormalisation theorems so the
classical computation is exact. SUSY algebra guarantees still Hyperkahler

Turning on masses miy, restricts vacua to fixed points of Turning on Fl y, restricts vacua to fixed points of
tri-Hamiltonian isometry Gy;. tri-Hamiltonian isometry G-



Algebras of Chiral Operators

Operators which parametrise vacuum manifolds are annihilated by 2 supercharges. Call them chiral.

« Higgs operators Q}rl, 0!?. Coulomb operators Q}rl, 0?!

» By SCFT unitary bound arguments, we can just consider the cohomology of QO = Jlri + Qli and
0c=0l1+0?!

L 0 3
Translation is Q-exact: — ~ {0, O}.

ox

Chiral algebras are just the coordinate rings of the moduli spaces of vacua. C[.# ;] and C[.Z ].

Explicitly: C| A ;] = C[X", Yi]G/(ﬂC — 1) - Complex symplectic reduction of free ring.

Coulomb branch is more difficult. Need to determine ring relations, Poisson bracket etc. Done in
. Mathematically:



Omega Deformation and Quantised Algebras

o ()-deformation: deform such that

2
QH,C B va. \
e Vs the Killing vector generating rotations
0,

about an axis in R°

* Localises to a quantum mechanics: a non- y @

linear o-model to either the Higgs or
Coulomb branch

* Operator ordering now matters. We are \
lead to quantised algebras C[.Z ] and
ClA (], which are non-commutative.
Puts some hats on the operators.




Example: SQED][N]

Higgs Branch ./ ;; = T*pN-1

Classically: C[ ] = C[T*P"~!]

Quantised algebra: {Y;, X;}pg [IA/Z-, )A(j] = €,

i,i=1,..N

Gauge invariant generators:

Fixes Casimirs, so @[%H] is a central quotient of U(31y)

Coulomb Branch ./ -

Unresolved: Ay_; singularity
Classically, #: viv™ ="
Quantised algebra:

[, V. ] =FxeV,,

D | ™
N——

N
Vv, V_ (qﬂ -+ m;c —

i=1
which is a spherical rational Cherednik algebra.



Boundary Conditions and Modules

Enrich the set-up by introducing 4/ = (2,2) boundary
conditions on R* . Identify R, = Ry, R~ = R,

Certain fields/operators are supported by the boundary
condition. Both Coulomb and Higgs branch operators.

Turning on an QH C-deformatlon (Higgs or Coulomb) - we get

a module of C[%H] or C[%C] by bringing bulk operators to
the boundary [Bullimore, Dimofte, Gaiotto, Hilourn].

There can be boundary ’t Hooft anomalies. Fora 3d /' = 4
theory, the only possibilities are the following mixed anomalies:

k, ki, ky k



Exceptional Dirichlet and Verma Modules

S
I

 Turning on mp, R, we have distinct, isolated vacua a.

|2
v
K

* Focus on special class of BC, 'thimbles’, which mimic a vacuum « at infinity for a choice of chamber of
My, N - Preserves 1y X 1~ - ‘exceptional’.

» (2,2) BPS equations at boundary are Morse flow, with respect to Morse function e.g. myp, - HER -

 We choose a Lagrangian splitting of the hyper-multiplets Xi, Y! such that the image of the boundary
condition is the attracting Lagrangian £, of the fixed point a € ;.

o Also impose A” = 0 - ‘Dirichlet’, this supports boundary monopole operators.



Exceptional Dirichlet and Verma Modules

* |Bullimore, Dimofte, Gaiotto, Hilburn| argue on general grounds this
yields lowest weight Verma modules %{j»c for C| A a.cl, for each

vacuum. Lowest weight is w.r.t. e.g. fiy ¢ .

* We find the charge of the lowest weight state is given by the
anomalies induced by the boundary condition:

) 1
ﬂH,C‘%>H= —ky+—nc -k ) | B
2

€

) I
ﬂc,q:|955>cz —ky +—nc -k )| B)©
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Example: SQED][N]

Higgs A . Fix a chamber mp | < ... < mp y.

Thimble boundary condition for i vacuum is: The quantisation of the bulk operators acts as:
0, X =0, Y. =0 > 1. o o _ S 7
L% J J X;=XX;, Yj—ﬁxj J>1.

The states in the module are polynomials in the scalars assigned Neumann BC. The lowest weight state | 95’1.) associated to this

module is represented by 1. Identifying generating set of raising operators: o
fi=XY, j<i

N
We measure weights with respect to /1, := Z m; 3/2H,j,¢:3 = 2 m; )A(]IA’] . On the vacuum:

€
hy | 9Bi) = 2] Z(mj_mi)_Z(mj_mi) +nem; || 9B;)
j>i j<i

The coefficients of the fugacities precisely encodes the boundary 't Hooft anomalies induced by the boundary condition.
For example, the m.n- term precisely encodes the mixed Higgs/Coulomb branch flavour symmetry anomaly.



Half Indices

RV+RA RV_RA

jggazTr(—l)Fq‘” 2 xluglfc,

» Associated to a given boundary condition &% .

e A count of boundary operators in Q}ri cohomology. Includes Higgs and
Coulomb branch chiral operators, but also many others.

» (Gradings by Higgs and Coulomb branch flavour symmetries, and also

particular combinations of boundary R-symmetries which commute with the
supercharge.

o Starts at 1 - the identity operator is uncharged.

e Derived In



Hemisphere Partition Function

* Alternatively, via state-operator correspondence, we compute
the partition function on S' X H?. The boundary condition %,

for a vacuum «a is imposed on the boundary T>.

« Counts states on a hemisphere, annihilated by Q}rl.

 Compute via supersymmetric localisation. For a Dirichlet
boundary condition on the vector multiplet: BPS configurations
are monopole configurations on the hemisphere.

Z5 4 = lim [gche—S[@]—éQ-V[@]

a O— 00

—S [V
— Z € cl! ]Z1—|00p(Q9Z9x959 m),

meZzZk

* Related to half index by a ‘Casimir energy’ e?.



Casimir Energies, Boundary 't Hooft Anomalies
Z5M = e¥. g = e?5Z ) 1, Fy

 (Casimir Energy is exactly the anomaly polynomial for the boundary 't Hooft anomaly (actually
true for /' = 2 theories t00).

1 -
by = -~ [log (q"112) - & - log (q1/4t‘1/2)]

1
| 1 [log (qmt_l/z) cky logx]
024

1
| [logé - ky - log (q1/4t1/2)]
log g

! log & - k - log x|
']qu O 0g X

« For an empty bulk, this is just the statement on (2,2) elliptic genera in



Higgs and Coulomb Character Limits

zSg;:Hz _ eqbggajgga — eqb@agl_lwpzv

. N

Iim lim
1 1
t—q 2 1—q2
Additional commuting Additional commuting
supercharge Q12 supercharge Q2!
gt — Ju A (X)ZTI’ CfJC
gga(x) — r?’/%ax B, g,
k 0 k 0g X
eqbgga — xTA_l_k.}ogg eqbgga — 57‘/+k‘}0§q
Zl_lgop — Verma character denominator Zl_ZOOP — 1
£y — 1 Z , = Verma character denominator

In both cases: the limit of the Casimir energy precisely yields the character of the highest weight
states of the respective Vermas! (log g — €). This was missing from the half-index.



Example: SQED[N]

For the i vacuum, and Thimble boundary condition B; : ky, mixed Ty — R, anomaly

Verma character denominators

k, mixed Ty, — T~ anomaly ~ bulk raising operators

ky, mixed T, — R,, anomaly
1
log &log(x)) 52

g%.lC:llmZ!@:e logg
t—>q% | 1_5




Holomorphic Factorisation

o Partition functions of ./ > 2 theories on closed 3-manifolds have been shown to factorise, at least
partially:

Sle2 SI><H2

X g € SL(2,72) X

U D

 Holomorphic blocks yields fairly systematic approach, but is an IR calculation.
H , there identified with partition function on infinite cigar obtained by stretching a hemisphere geometry. No

exact deformation of .Z ; into two copies of cigar geometry exists, and ambiguity in the classical piece.



Holomorphic Factorisation

* Motivated by the fact that UV exceptional Dirichlet/ thimble boundary conditions

mimic a vacuum at infinity, for /' = 4 theories we propose our basis of
hemisphere partition functions associated to vacua as the blocks. We find an

exact factorisation (incl. classical pieces)!

ﬂ

Boundary Condition %ja \Xj H — Z%




IR Formulae

* Corollary: Various limits of closed 3-manifold partition functions (such as the

superconformal index, twisted index and squashed ellipsoid Sg partition
function) can be expressed in terms of Verma characters!

Zo= ) xHyEE

Z&o= 2 x o EZE WAV

oo = 2O E™ AW AAS



Other aspects & future directions

 Non-abelian examples, e.g. 3d ADHM |[Crew, Dorey, D/]

* |everage factorisation/mathematical understanding of these half-
indices to evaluate large N and Cardy limits - these should yield
entropy functionals for black hole microstates for theories with AdS

duals.
* Enumerative geometry - vortex moduli spaces

* The elliptic stable envelopes [Aganagic, Okounkov]. Mirror symmetry
of boundary conditions and modules.




