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INTRODUCTION
Integrable theories in two dimensions are characterised by the presence of  higher spin 
conserved charges that constrain the scattering processes to be diagonal and factorised. 

S3→3 = S2→2S2→2S2→2

The exact S-matrix for a variety of 2d 
integrable quantum field theories has been 
found in the last 30 years using bootstrap.


Axiomatic procedure Perturbation theory
Integrability manifests itself in a surprising 
cancellation of Feynman diagrams 
contributing to non-elastic scattering 
(incoming state  outgoing state). This 
mechanism is not completely understood 
also at the tree-level.


≠

We focus on a class of integrable theories in (1+1) dimensions described by a scalar Lagrangian of the form  

L =
1
2

∂μϕa∂μϕa −
1
2

m2
aϕ2

a −
1
3!

Cabcϕaϕbϕc −
1
4!

Cabcdϕaϕbϕcϕd − …



pj = mj (cosh θj, sinh θj)

Branch cut Branch cut

(ma + mb)2(ma − mb)2

Bound state poles

sθ ≥ 0θ = iπ − θ̃

θ = iu , u ∈ [0,π]

θ̃ ≥ 0

Analyticity structure of 4 point S-matrix in two dimensions

s = (pa + pb)2 = m2
a + m2
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Condition on physical momentaθ = θa − θb
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On the bound state region momenta are complex numbers having absolute value equal to their masses

pa = ma (cos ua, i sin ua) ≅ maeiua pb = mb (cos ub, i sin ub) ≅ mbeiub



If  is a possible bound state propagating particle (i.e. ) on the pole position   

 Feynman diagrams have a geometrical meaning 
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While on the LHS the lengths and the directions of the momenta do not have a physical interpretation, on 
the RHS they are meaningful.  Arrow lengths correspond to the masses of propagating particles and their 
directions correspond to the associated rapidities.

≅ On-shell dual description of

Feynman diagrams

Each non-zero vertex can be represented by a triangle having as sides the masses of the fusing particles



Poles in non-diagonal processes of the form

 cancel through a flipping rule.a + b → c + d
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If for a choice of external kinematic an internal propagator goes on-shell

generating a pole, then there is an other propagator in an other

channel going on-shell for the same choice of the kinematic. 


In this way there are always copies (or triplets) of singular Feynman 
diagrams that cancel each other.

A FEW WORDS ABOUT CANCELLATION OF 

4-POINT NON-DIAGONAL PROCESSES 



FINDING THE RESIDUES OF 4-POINT NON-ALLOWED PROCESSES
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In 2 dimensions the Mandelstam variables  and  can be expressed as functions of t u s
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Cabc = fabcΔabc fabī fic̄d̄ − fac̄j fj̄bd̄ + fad̄l fl̄bc̄ = 0

In 2 dimensions the Mandelstam variables  and  can be expressed as functions of t u s



TREE-LEVEL BOOTSTRAP RELATIONS FROM CANCELLATION OF 5-POINT EVENTS

FINITE = ∼
Cabc̄

θ5 − θ3
[Stree

dc (θ34) − Stree
da (θ31) − Stree

db (θ32)]

If we set  on-shella, b, c

Defining  the imposition of not having poles in the 5-point process above becomes θ34 ≡ θ

Stree
dc (θ) = Stree

da (θ + θ41) + Stree
db (θ + θ42) = Stree

da (θ − iŪb
ac) + Stree

db (θ + iŪa
bc)

a(p1) + b(p2) + d(p3) → c(p4) + d(p5)

θ14 = iŪb
ac

θ42 = iŪc
bc



What about affine Toda theories?
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i ϕa

[ha, hb] = 0 [ha, eα] = αaeα [eα, eβ] = Nα,β eα+β

Let  be a semisimple Lie algebra and   its Cartan sub-algebra spanned by 𝒢 ℋ {ha}r
a=1

We can define a set of simple roots  obtained by diagonalising the basis  {αa}r
a=1 {ha}r

a=1

 set of integer numbers characteristic for each 

of the affine Dynkin diagram such that
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r

∑
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Expanding the potential around  and diagonalising the mass term  


we can start applying perturbation theory  
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w =
r

∏
i=1

wiCoxeter element

Weyl reflection respect

to the plane perpendicular to the simple root αi

Γa : γa → wγa → w2γa → … → wh−1γa → γa

 defines  orbits having  elements each one:w r h

a = 1,…, r
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In affine Toda theories we discover that the on-shell momenta are the projections 

of the roots on the plane defined by the two eigenvectors of  having as 

eigenvalues  

w
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)

Property 1:  iff  with Cabc̄ ≠ 0 ∃ α + β = γ α ∈ Γa, β ∈ Γb, γ ∈ Γc

Property 2: If property 1 is satisfied then we have

Cabc̄ =
4g

h
ΔabcNα,βsign[sin(ua − ub)]

fabc̄ ≡
4g

h
Nα,βsign[sin(ua − ub)]

ℝ2
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A UNIVERSAL FORMULA FOR ALLOWED SCATTERING
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It is possible absorbing this constant inside the sum

 by promoting sinh iuγa,β → sinh θ



CONCLUSIONS AND OUTLOOK

A.  We have proved absence of particle production at tree-level 
in all the untwisted affine Toda theories connecting them with 
properties of the underlying Lie algebra


B. Tree-level bootstrap relations can be derived from the root 
system showing how different S-matrix elements are connected


C. Still remains to be understood the higher loop structure of the 
building blocks. Possible ways: optical theorem and dispersion 
relation


D. It would be interesting investigating the space of integrable 
theories by the only imposition of absence of particle production 
at the tree-level




Thank you


