From tree-level perturbation theory to the S-matrix bootstrap in two dimensions

YTF 2020
(15-16 December 2020)

Davide Polvara
Based on a ongoing work with Patrick Dorey

INTRODUCTION

Integrable theories in two dimensions are characterised by the presence of higher spin conserved charges that constrain the scattering processes to be diagonal and factorised.

$$
S_{3 \rightarrow 3}=S_{2 \rightarrow 2} S_{2 \rightarrow 2} S_{2 \rightarrow 2}
$$

Axiomatic procedure

The exact S-matrix for a variety of 2d integrable quantum field theories has been found in the last 30 years using bootstrap.

Perturbation theory

Integrability manifests itself in a surprising cancellation of Feynman diagrams contributing to non-elastic scattering (incoming state \neq outgoing state). This mechanism is not completely understood also at the tree-level.

We focus on a class of integrable theories in (1+1) dimensions described by a scalar Lagrangian of the form

$$
L=\frac{1}{2} \partial_{\mu} \phi_{a} \partial^{\mu} \phi_{a}-\frac{1}{2} m_{a}^{2} \phi_{a}^{2}-\frac{1}{3!} C_{a b c} \phi_{a} \phi_{b} \phi_{c}-\frac{1}{4!} C_{a b c d} \phi_{a} \phi_{b} \phi_{c} \phi_{d}-\ldots
$$

Analyticity structure of 4 point S-matrix in two dimensions

$$
p_{j}=m_{j}\left(\cosh \theta_{j}, \sinh \theta_{j}\right)
$$

$$
s=\left(p_{a}+p_{b}\right)^{2}=m_{a}^{2}+m_{b}^{2}+2 m_{a} m_{b} \cosh \theta \quad \geq\left(m_{a}+m_{b}\right)^{2}
$$

$$
\theta=\theta_{a}-\theta_{b} \quad \text { Condition on physical momenta }
$$

On the bound state region momenta are complex numbers having absolute value equal to their masses

$$
p_{a}=m_{a}\left(\cos u_{a}, i \sin u_{a}\right) \cong m_{a} e^{i u_{a}} \quad \quad p_{b}=m_{b}\left(\cos u_{b}, i \sin u_{b}\right) \cong m_{b} e^{i u_{b}}
$$

If c is a possible bound state propagating particle (i.e. $C_{a b \bar{c}} \neq 0$) on the pole position $s=m_{c}^{2}$ Feynman diagrams have a geometrical meaning

On-shell dual description of Feynman diagrams

While on the LHS the lengths and the directions of the momenta do not have a physical interpretation, on the RHS they are meaningful. Arrow lengths correspond to the masses of propagating particles and their directions correspond to the associated rapidities.

Each non-zero vertex can be represented by a triangle having as sides the masses of the fusing particles

s-channel

In this way there are always copies (or triplets) of singular Feynman diagrams that cancel each other.

FINDING THE RESIDUES OF 4-POINT NON-ALLOWED PROCESSES

FINITE $=$

In 2 dimensions the Mandelstam variables t and u can be expressed as functions of s

$$
\left.\frac{d t}{d s}\right|_{s=m_{i}^{2}}=-\left.\frac{\Delta_{a c j} \Delta_{j b d}}{\Delta_{a b i} \Delta_{i c d}} \quad \frac{d u}{d s}\right|_{s=m_{i}^{2}}=\frac{\Delta_{a d l} \Delta_{l b c}}{\Delta_{a b i} \Delta_{i c d}}
$$

$$
t=m_{j}^{2}-\frac{\Delta_{a c j} \Delta_{j b d}}{\Delta_{a b i} \Delta_{i c d}}\left(s-m_{i}^{2}\right)+\ldots \quad u=m_{l}^{2}-\frac{\Delta_{a d l} \Delta_{l b c}}{\Delta_{a b i} \Delta_{i c d}}\left(s-m_{i}^{2}\right)+\ldots
$$

FINDING THE RESIDUES OF 4-POINT NON-ALLOWED PROCESSES

FINITE $=$

In 2 dimensions the Mandelstam variables t and u can be expressed as functions of s

$$
\left.\frac{d t}{d s}\right|_{s=m_{i}^{2}}=-\frac{\Delta_{a c j} \Delta_{j b d}}{\Delta_{a b i} \Delta_{i c d}}
$$

$$
\left.\frac{d u}{d s}\right|_{s=m_{i}^{2}}=\frac{\Delta_{a d l} \Delta_{l b c}}{\Delta_{a b i} \Delta_{i c d}}
$$

$$
t=m_{j}^{2}-\frac{\Delta_{a c j} \Delta_{j b d}}{\Delta_{a b i} \Delta_{i c d}}\left(s-m_{i}^{2}\right)+\ldots
$$

$$
u=m_{l}^{2}-\frac{\Delta_{a d l} \Delta_{l b c}}{\Delta_{a b i} \Delta_{i c d}}\left(s-m_{i}^{2}\right)+\ldots
$$

FINDING THE RESIDUES OF 4-POINT NON-ALLOWED PROCESSES

FINITE $=$

In 2 dimensions the Mandelstam variables t and u can be expressed as functions of s

$$
\left.\frac{d t}{d s}\right|_{s=m_{i}^{2}}=-\left.\frac{\Delta_{a c j} \Delta_{j b d}}{\Delta_{a b i} \Delta_{i c d}} \quad \frac{d u}{d s}\right|_{s=m_{i}^{2}}=\frac{\Delta_{a d l} \Delta_{l b c}}{\Delta_{a b i} \Delta_{i c d}}
$$

$$
\begin{array}{cc}
t=m_{j}^{2}-\frac{\Delta_{a c j} \Delta_{j b d}}{\Delta_{a b i} \Delta_{i c d}}\left(s-m_{i}^{2}\right)+\ldots & u=m_{l}^{2}-\frac{\Delta_{a d l} \Delta_{l b c}}{\Delta_{a b i} \Delta_{i c d}}\left(s-m_{i}^{2}\right)+\ldots \\
C_{a b c}=f_{a b c} \Delta_{a b c} & f_{a b \bar{i}} f_{i \bar{c} \bar{d}}-f_{a \bar{c}} f_{\bar{j} b \bar{d}}+f_{a \bar{d} l} f_{\bar{l} b \bar{c}}=0
\end{array}
$$

TREE-LEVEL BOOTSTRAP RELATIONS FROM CANCELLATION OF 5-POINT EVENTS

If we set a, b, c on-shell

$$
\begin{aligned}
a\left(p_{1}\right) & +b\left(p_{2}\right)+d\left(p_{3}\right) \rightarrow c\left(p_{4}\right)+d\left(p_{5}\right) \\
\theta_{14} & =i \bar{U}_{a c}^{b} \\
\theta_{42} & =i \bar{U}_{b c}^{c}
\end{aligned}
$$

Defining $\theta_{34} \equiv \theta$ the imposition of not having poles in the 5 -point process above becomes

$$
S_{d c}^{\text {tree }}(\theta)=S_{d a}^{\text {tree }}\left(\theta+\theta_{41}\right)+S_{d b}^{\text {tree }}\left(\theta+\theta_{42}\right)=S_{d a}^{\text {tree }}\left(\theta-i \bar{U}_{a c}^{b}\right)+S_{d b}^{\text {tree }}\left(\theta+i \bar{U}_{b c}^{a}\right)
$$

What about affine Toda theories?

Let \mathscr{G} be a semisimple Lie algebra and \mathscr{H} its Cartan sub-algebra spanned by $\left\{h_{a}\right\}_{a=1}^{r}$
We can define a set of simple roots $\left\{\alpha_{a}\right\}_{a=1}^{r}$ obtained by diagonalising the basis $\left\{h_{a}\right\}_{a=1}^{r}$

$$
\begin{aligned}
& {\left[h_{a}, h_{b}\right]=0 \quad\left[h_{a}, e_{\alpha}\right]=\alpha_{a} e_{\alpha} \quad\left[e_{\alpha}, e_{\beta}\right]=N_{\alpha, \beta} e_{\alpha+\beta}} \\
& \mathscr{L}=\frac{1}{2} \partial_{\mu} \phi_{a} \partial^{\mu} \phi_{a}-\frac{m^{2}}{g^{2}} \sum_{i=0}^{r} n_{i} e^{g \alpha_{i}^{a} \phi_{a}} \quad n_{0}=1
\end{aligned}
$$

$$
n_{i}: \text { set of integer numbers characteristic for each }
$$

of the affine Dynkin diagram such that

$$
\alpha_{0}=-\sum_{i=1}^{r} n_{i} \alpha_{i}
$$

Expanding the potential around $\phi=0$ and diagonalising the mass term $M_{a b}^{2}=m^{2} \sum_{i=0}^{r} n_{i} \alpha_{i}^{a} \alpha_{i}^{b}$ we can start applying perturbation theory

Coxeter element $w=\underbrace{r}_{i=1} \mathcal{W}_{i}^{r} \prod_{\text {Weyl reflection respect }}^{r}$
w defines r orbits having h elements each one:

$$
\Gamma_{a}: \quad \gamma_{a} \rightarrow w \gamma_{a} \rightarrow w^{2} \gamma_{a} \rightarrow \ldots \rightarrow w^{h-1} \gamma_{a} \rightarrow \gamma_{a} \quad a=1, \ldots, r
$$

to the plane perpendicular to the simple root α_{i}

In affine Toda theories we discover that the on-shell momenta are the projections of the roots on the plane defined by the two eigenvectors of w having as eigenvalues $\exp \left(\pm \frac{2 \pi i}{h}\right)$

Property 1: $C_{a b \bar{c}} \neq 0$ iff $\exists \alpha+\beta=\gamma$ with $\alpha \in \Gamma_{a}, \beta \in \Gamma_{b}, \gamma \in \Gamma_{c}$

Property 2: If property 1 is satisfied then we have

$$
C_{a b \bar{c}}=\frac{4 g}{\sqrt{h}} \Delta_{a b c} N_{\alpha, \beta} \operatorname{sign}\left[\sin \left(u_{a}-u_{b}\right)\right]
$$

$$
\mathbb{R}^{r}
$$

$$
f_{a b \bar{c}} \equiv \frac{4 g}{\sqrt{h}} N_{\alpha, \beta} \operatorname{sign}\left[\sin \left(u_{a}-u_{b}\right)\right]
$$

A UNIVERSAL FORMULA FOR ALLOWED SCATTERING

$$
M_{a b}=-i \sum_{i} \frac{\left|C_{a b i}\right|^{2}}{S-m_{i}^{2}}-i \sum_{j} \frac{\left|C_{a b j}\right|^{2}}{t-m_{j}^{2}}-\frac{g^{2}}{h} \frac{m_{a}^{2} m_{b}^{2}}{m^{2}}
$$

$$
\begin{aligned}
& s=\left(p_{a}+p_{b}\right)^{2}=m_{a}^{2}+m_{b}^{2}+2 m_{a} m_{b} \cosh \theta \\
& t=\left(p_{a}-p_{b}\right)^{2}=m_{a}^{2}+m_{b}^{2}-2 m_{a} m_{b} \cosh \theta \\
& u=\left(p_{a}-p_{a}\right)^{2}=0
\end{aligned}
$$

$$
M_{a b}=\frac{i g^{2}}{h} m_{a} m_{b} \sum_{\substack{\beta \in \Gamma_{b} \\ \beta \neq \pm \gamma_{a}}}(\underbrace{\left|N_{\gamma_{a}, \beta}\right|^{2}-\left|N_{\gamma_{a}, \beta}\right|^{2}}_{-\left(\gamma_{a}, \beta\right)}) \frac{\sinh ^{2} i u_{\gamma_{a} \beta}}{\cosh \theta-\cos u_{\gamma_{a} \beta}}-i \frac{g^{2}}{h} \frac{m_{a}^{2} m_{b}^{2}}{m^{2}}
$$

$$
M_{a b}=-\frac{i g^{2}}{h} m_{a} m_{b} \sum_{\beta \in \Gamma_{b}}\left(\gamma_{a}, \beta\right) \frac{\sinh ^{2} \theta}{\cosh \theta-\cos u_{\gamma_{a} \beta}}
$$

$$
S_{a b}^{\text {tree }}(\theta)=\frac{1}{4 m_{a} m_{b} \sinh \theta} M_{a b}(\theta)
$$

CONCLUSIONS AND OUTLOOK

A. We have proved absence of particle production at tree-level in all the untwisted affine Toda theories connecting them with properties of the underlying Lie algebra
B. Tree-level bootstrap relations can be derived from the root system showing how different S-matrix elements are connected
C. Still remains to be understood the higher loop structure of the building blocks. Possible ways: optical theorem and dispersion relation
D. It would be interesting investigating the space of integrable theories by the only imposition of absence of particle production at the tree-level

Thank you

SAGEX

Scattering Amplitudes:

