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What are we after? Understanding fractionalisation
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What are we after? Understanding fractionalisation

Fractionalisation
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WHEN THE ELECTRON » Quasi-examples: Laughlin quasiholes,
FALLS APART spinons, chargons/holons, visons, Majorana

zero modes

In condensed matter physics, some particles behave like fragments of
an electron.

Philip W. Anderson Topologically Ordered Phases:

Quantum spin liquids,
Fractional quantum Hall effects

No symmetry breaking order

Emergent gauge structure
Topology

Interactions

Long-range entanglement
Groundstate degeneracy
Quantum anomalies
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B quesiperide quasiparticles Chern-Simons Theory



Fractionalisation? Fractional Quantum Hall effect as an example

Take a 2+1D electron gas and putitin a strong (10-20T) magnetic field, spin is “frozen”

(i) (ii) (iii)

= fg(,ﬁ ve Picture

Emergent/self-generated statistical gauge field @&



How does it work in practice ? The magic of a Chern-Simons term

Example in 2+1D: Flux Attachment / Chern-Simons Theo Fractionalisation

) Start from a Chern-Simons Term — Note this is similar to a Maxwell term but with one derivative less
® Equation of motion with a matter source - (Generic) matter content is found in the current

Coulomb Gauge

—

® Write in components and solve

Flux Attachment Density-dependent Gauge Field



How does it work in practice ? The magic of a Chern-Simons term

Example in 2+1D: Flux Attachment / Chern-Simons Theory / Fractionalisation

K

é Start from a Chern-Simons Term ECS — _4_ GP’VAA” 3V AA Note this is similar to a Maxwell term but with one derivative less
7
® Equation of motion with a matter source j B — 2£ € PV 0, Ay (Generic) matter content is found in the current
s

® Write in components and solve

ouiom auge e —_ /
BEVXA=2%p Coulomb Gaug A(r)=%/d2r'ezx(r r)p(r,)

r —r/|?
Flux Attachment Density-dependent Gauge Field
A 2 A
n D — A 2 5 2
Hamiltonian Duality Hp = [p ] — Hc= b or Operator Duality

Up(r) = Ucs(r) po(r)

composite particle

U (r) contains a
topological soliton



How does it work in practice ? The magic of a Chern-Simons term

Example in 2+1D: Flux Attachment / Chern-Simons Theory / Fractionalisation

K

® Startfrom a Chern-Simons Term Los = ~ GI'W)‘AM 0, A
, K
# Equation of motion with a matter source = - e** 9, Ay

® Write in components and solve

Flux Attachment

, _[p-A] I
Hamiltonian Duality Hp = — Hc=-—
2m 2m
e* = E (6, \IIB) (6*, SOC)
m

21 Coulomb Gauge

BEVXA=?p -

A(r) — %/d2r/ €, X (r_r,) p(r')

or

Note this is similar to a Maxwell term but with one derivative less

(Generic) matter content is found in the current

r —r/|?

Density-dependent Gauge Field

Operator Duality

Up(ry,re) = (£)¥p (re,r1)

Up(r) = Ucs(r) po(r)

composite particle

U (r) contains a
topological soliton
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The Conundrum: Where does the statistical gauge field come form in the first place ?

Steven M. Girvin and Kun Yang

Modern
Condensed S. M. Girving and K. Yang, “Modern Condensed Matter Physics”, Cambridge (2019)

Matter
Physics

Figure 16.9 The piercing of a charge (which is confined to 2D) with a flux tube. The resulting composite object
can have fractional statistics. To date, experimentalists have not succeeded in performing this operation;
however, nature has been (as always) more clever. Figure reprinted with permission from [90]. Copyright 1989
World Scientific Publishing Co. Pte Ltd.
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The problem with all this is the microscopic “origin” or the “emergence” of this Chern-Simons Term



A Bottom-Up Approach

GOAL: From a microscopic interacting quantum-many body system, derive the “self-generation” of a Chern-Simons term so that it performs flux attachment at an effective level.
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A Bottom-Up Approach

GOAL: From a microscopic interacting quantum-many body system, derive the “self-generation” of a Chern-Simons term so that it performs flux attachment at an effective level.
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Challenges

Flux Attachment is Emergent It is a Topological Field Theory Ultracold Atoms: Dilute & Charge Neutral

Quantum Fluids Quantum “Solids”
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Engineered Systems: Quantum Simulation
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F. Gorg et al., Nature Phys. 15, 1161 (2019)
V. Lienhard et al., Phys. Rev. X 10, 021031 (2020)
C. Schweizer et al., Nature Phys. 15, 1168 (2019)

How to go from a theory of background gauge fields to a gauge theory ? Supplement with some constraint!

ih s W(t,r) = —

0 h?
ot 2m (

V- i%A)2\I!(t,r) A;(t,r) = f[n (t,r)] éi  where n(t,r)=|T|?



Microscopic Scheme

BEC of atoms with 2 internal levels coupled by a laser beam

v (2

ext rz)+U rz ) + Y Ygaa

o,0'=11<3

Interparticle contact pairwise Interaction Vij

External Potential e.g. trapping potential

Light-Matter Interaction U(r;) = RQ(r;) (n(ri) °5)




Microscopic Scheme

BEC of atoms with 2 internal levels coupled by a laser beam 0 i—__r |2>
W
p> 2 -\\> Wa
H:; y Vet (1) + U (rs) +U§;1§gaa/5(ri—rj) —— 1)

Interparticle contact pairwise Interaction Vij

External Potential e.g. trapping potential

Light-Matter Interaction U(r;) = RQ(r;) (n(ri) °5)

Approximations: “Deriving” emergence

V.S.

L @

U(ry,....rn) ~ U (ry)... ¥ (ry) >g | (¢, 1)) = Dy (¢, 1) |+ ()
Mean-Field Perturbation Adiabatic
2
Hur = 5— +V +U + Vg £) & |£@) + |£D) iho, &y = HE®,

Mean-field Hamiltonian is projected onto the eigenstate in which the system is prepared
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External Potential

Approximations: “Deriving” emergence

V.S.

L @

U(ry,....rn) ~ U (ry)... ¥ (ry) >g | (¢, 1)) = Dy (¢, 1) |+ ()
Mean-Field Perturbation Adiabatic
2
Hur = 5— +V +U + Vg £) & |£@) + |£D) iho, &y = HE®,

Mean-field Hamiltonian is projected onto the eigenstate in which the system is prepared

ext(rz) + U rz )

Microscopic Scheme

BEC of atoms with 2 internal levels coupled by a laser beam

o,0'=1 1<

Interparticle contact pairwise Interaction Vij

e.g. trapping potential

Light-Matter Interaction U(r;) = RQ(r;) (n(ri) °5)
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Berry Connection
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Perturbative Expansion
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Effective Model Corresponds to

Macroscopic or Composite Boson description of a FQH fluid

VOLUME 62, NUMBER 1 PHYSICAL REVIEW LETTERS 2 JANUARY 1989

Effective-Field-Theory Model for the Fractional Quantum Hall Effect

S. C. Zhang
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International Jou'rnal of Modern Physics B, Vol. 6, No. 1 (1992) 25-58
© World Scientif:ic Publishing Company

THE CHERN-SIMONS-LANDAU-GINZBURG THEORY
OF THE FRACTIONAL QUANTUM HALL EFFECT”*

SHOU CHENG ZHANG

IBM Research Division, Almaden Research Center, 650 Harry Road,
San Jose, CA 95120-6099, USA

Phenomenology

Summary & Conclusions

Fractionally quantised (atomic) Hall
conductance and transverse flow

Flux attached vortices

® Fractional (synthetic) charge
#® Anyonic statistics

They act as Laughlin quasiparticles

We derive emergent topological gauge theory in 2+1D in continuum. Chern-Simons gauge field is understood as a density-dependent Berry connection (synthetic gauge field)

We introduce a proof-of-concept scheme for a potential quantum simulation using a BEC. Only one species needed as compared to two species used in conventional LGTs

We obtain an effective (strongly correlated) FQH fluid with fractionalised excitations (vortices) out of a dilute weakly interacting system. We “induce” flux attachment

Systems with density-dependent gauge fields can be understood as gauge theories with (certain) topological structure

Discretisation of the model for a lattice realisation is straightforward. Extensions as coupling to fermions or higher-spin structures are a subject for further work
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More Slides
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Other properties of the ZHK model

Gapped (Incompressible) spectrum

Anderson-Higgs Mechanism

“q
Nonlocal order parameter
Off-diagonal long-range order
- » >
q q
(a) (b) Laughlin wavefunction for vortices
Phonon-Roton Spectrum (Superfluid) Magneto-Phonon-Roton Spectrum (FQH fluid)

Vortices cost finite energy



The Quantum Hall effect: Integer vs Fractional
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Background vs Dynamical gauge fields

(1)

Is this a gauge theory ?

NO! Gauge field is Background (non-dynamical)

Charged particle in a magnetic field

(2)

Recipe for a gauge theory

A backaction mechanism is needed
between gauge and matter sectors

\ e

() Gauge-Matter (ii) Dynamical (iii) Local Gauge
Coupling Gauge fields Invariance

Some random example: Lattice “Scalar Electrodynamics” in 1+1D

e | e
— - - - -, —
@ Q Q @
b, Aoy 5

Impose Local Constraint

To continuum

Eiv — Ej = (N@); > V-E

H=-tY (bl , e bj+Hc)+JY E?
- .

Jtéa
J

where E; = —0; A (7)



