Towards an M5-Brane Model with bits and pieces of Higher Gauge Theory and Lagrange multipliers and supersymmetry

Dominik Rist Joint work with Christian Saemann and Miro van der Worp. (2012.????)

Heriot-Watt University, Edinburgh

December 15, 2020

Outline

Motivation

What do we want to do?

• Big goal: Better understand M-theory

Dominik Rist Towa

Towards an M5-Brane Model

Motivation

What do we want to do?

- Big goal: Better understand M-theory
- Smaller goal: understand (2,0)-Theory

• Representation theory and string theory predicts a mysterious superconformal field theory in six dimensions related to M-theory. (1995, Witten)

I ≡ ▶ < </p>

- Representation theory and string theory predicts a mysterious superconformal field theory in six dimensions related to M-theory. (1995, Witten)
- Little is known.
- No Lagrangian exists irreducibly quantum?

(2, 0)-theory

What we know so far:

• M5 branes interact via M2 branes, boundaries = *self-dual strings*

(2, 0)-theory

What we know so far:

- M5 branes interact via M2 branes, boundaries = *self-dual strings*
- 6D SCFT from M-theory with (2,0) SUSY
- Field content:

(2,0) tensor multiplet

includes 2-form B field

(2,0)-theory

What we know so far:

- M5 branes interact via M2 branes, boundaries = *self-dual strings*
- 6D SCFT from M-theory with (2,0) SUSY
- Field content:
 (2,0) tensor multiplet includes 2-form B field
- This B field satisfies the self-duality equation:
 H := dB = *H

(2,0)-theory

What we know so far:

- M5 branes interact via M2 branes, boundaries = *self-dual strings*
- 6D SCFT from M-theory with (2,0) SUSY
- Field content:
 (2,0) tensor multiplet includes 2-form B field
- This B field satisfies the self-duality equation:
 H := dB = *H

What we know so far:

 It describes stacks of M5-branes with gravity turned off (just as Yang-Mills theory describes stacks of D-branes)

What we know so far:

- It describes stacks of M5-branes with gravity turned off (just as Yang-Mills theory describes stacks of D-branes)
- It has Wilson surfaces as observables (just as Yang–Mills has Wilson lines)

What we know so far:

- It describes stacks of M5-branes with gravity turned off (just as Yang-Mills theory describes stacks of D-branes)
- It has Wilson surfaces as observables (just as Yang–Mills has Wilson lines)
- It is a theory of extended objects self-dual strings

What we know so far:

- It describes stacks of M5-branes with gravity turned off (just as Yang-Mills theory describes stacks of D-branes)
- It has Wilson surfaces as observables (just as Yang–Mills has Wilson lines)
- It is a theory of extended objects self-dual strings

What we need: a framework to describe such a theory, e.g. parallel transport of extended objects

What we know so far:

- It describes stacks of M5-branes with gravity turned off (just as Yang-Mills theory describes stacks of D-branes)
- It has Wilson surfaces as observables (just as Yang–Mills has Wilson lines)
- $\bullet\,$ It is a theory of extended objects $self-dual\,\,strings$

What we need: a framework to describe such a theory, e.g. parallel transport of extended objectsGood news! There is such a framework – higher gauge theory.

Yang-Mills theory

Yang-Mills theory specified by:

- principal G-bundle over M; Lie algebra \mathfrak{g}
- gauge field $A \in \Omega^1(M) \otimes \mathfrak{g}$
- curvature $F := \mathrm{d} A + \frac{1}{2} [A, A] \in \Omega^2(M) \otimes \mathfrak{g}$

Yang-Mills theory

Yang-Mills theory specified by:

- principal G-bundle over M; Lie algebra \mathfrak{g}
- gauge field $A \in \Omega^1(M) \otimes \mathfrak{g}$
- curvature $F := \mathrm{d} A + rac{1}{2} [A, A] \in \Omega^2(M) \otimes \mathfrak{g}$
 - satisfies Bianchi identity: $\nabla F \equiv dF + [A, F] = 0$

Yang-Mills theory

Yang-Mills theory specified by:

- principal G-bundle over M; Lie algebra \mathfrak{g}
- gauge field $A \in \Omega^1(M) \otimes \mathfrak{g}$
- curvature $F := \mathrm{d} A + \frac{1}{2} [A, A] \in \Omega^2(M) \otimes \mathfrak{g}$
 - satisfies Bianchi identity: $\nabla F \equiv dF + [A, F] = 0$
- action $S = -\frac{1}{2} \int_{\mathcal{M}} (F, \star F) = -\frac{1}{2} \int_{\mathcal{M}} \operatorname{Tr}(F \wedge \star F)$

Yang-Mills theory

Yang-Mills theory specified by:

- principal G-bundle over M; Lie algebra \mathfrak{g}
- gauge field $A \in \Omega^1(M) \otimes \mathfrak{g}$
- curvature $F := \mathrm{d} A + \frac{1}{2} [A, A] \in \Omega^2(M) \otimes \mathfrak{g}$
 - satisfies Bianchi identity: $\nabla F \equiv dF + [A, F] = 0$

• action
$$S = -\frac{1}{2} \int_{\mathcal{M}} (F, \star F) = -\frac{1}{2} \int_{\mathcal{M}} \operatorname{Tr}(F \wedge \star F)$$

- $\bullet\,$ abelian $\mathfrak g$ free theory
- $\bullet\,$ non-abelian $\mathfrak g$ interacting
- Equation of motion: $d \star F + [A, \star F] = 0$

Yang-Mills theory

Yang-Mills theory specified by:

- principal G-bundle over M; Lie algebra \mathfrak{g}
- gauge field $A \in \Omega^1(M) \otimes \mathfrak{g}$
- curvature $F := \mathrm{d} A + \frac{1}{2} [A, A] \in \Omega^2(M) \otimes \mathfrak{g}$
 - satisfies Bianchi identity: $\nabla F \equiv dF + [A, F] = 0$

• action
$$S = -\frac{1}{2} \int_{\mathcal{M}} (F, \star F) = -\frac{1}{2} \int_{\mathcal{M}} \operatorname{Tr}(F \wedge \star F)$$

- $\bullet\,$ abelian $\mathfrak g$ free theory
- $\bullet\,$ non-abelian $\mathfrak g$ interacting
- Equation of motion: $d \star F + [A, \star F] = 0$

• Add SUSY:
$$S = -\frac{1}{2} \int_{\mathcal{M}} (F, \star F) - \frac{1}{2} \int_{\mathcal{M}} (\bar{\lambda}, \nabla \lambda) \text{vol}$$

Higher gauge theory: L_{∞} -algebras

• Generalizations of Lie algebras

< ∃ →

э

Higher gauge theory: L_{∞} -algebras

- Generalizations of Lie algebras
- L_∞-algebra:
 - a graded vector space $L = \oplus_n L_n$

< ∃ >

Higher gauge theory: L_{∞} -algebras

- Generalizations of Lie algebras
- L_{∞} -algebra:
 - a graded vector space $L = \oplus_n L_n$
 - with totally antisymmetric multilinear higher products $\mu_i: L^{\wedge i} \to L$ of degree 2 i

★ ∃ →

Higher gauge theory: L_{∞} -algebras

- Generalizations of Lie algebras
- L_{∞} -algebra:
 - a graded vector space $L = \oplus_n L_n$
 - with totally antisymmetric multilinear higher products $\mu_i: L^{\wedge i} \to L$ of degree 2 i
 - which satisfy certain identities (homotopy Jacobi), e.g. $\mu_1 \circ \mu_1 = 0$

A B > A B >

Higher gauge theory: L_{∞} -algebras

- Generalizations of Lie algebras
- L_{∞} -algebra:
 - a graded vector space $L = \oplus_n L_n$
 - with totally antisymmetric multilinear higher products $\mu_i: L^{\wedge i} \to L$ of degree 2 i
 - which satisfy certain identities (homotopy Jacobi), e.g. $\mu_1 \circ \mu_1 = 0$
- elements $a \in L_1$ of degree 1 are generalized gauge potentials

Higher gauge theory: L_{∞} -algebras

- Generalizations of Lie algebras
- L_{∞} -algebra:
 - a graded vector space $L = \oplus_n L_n$
 - with totally antisymmetric multilinear higher products $\mu_i: L^{\wedge i} \to L$ of degree 2 i
 - which satisfy certain identities (homotopy Jacobi), e.g. $\mu_1 \circ \mu_1 = 0$
- elements $a \in L_1$ of degree 1 are generalized gauge potentials
- curvature: $f := \mu_1(a) + \frac{1}{2}\mu_2(a,a) + \frac{1}{3!}\mu_3(a,a,a) + \dots \in L_2$

Higher gauge theory: L_{∞} -algebras

- Generalizations of Lie algebras
- L_{∞} -algebra:
 - a graded vector space $L = \oplus_n L_n$
 - with totally antisymmetric multilinear higher products $\mu_i: L^{\wedge i} \rightarrow L$ of degree 2 i
 - which satisfy certain identities (homotopy Jacobi), e.g. $\mu_1\circ\mu_1=0$
- elements $a \in L_1$ of degree 1 are generalized gauge potentials
- curvature: $f := \mu_1(a) + \frac{1}{2}\mu_2(a,a) + \frac{1}{3!}\mu_3(a,a,a) + \dots \in L_2$
- Bianchi identity

$$\mu_1(f) - \mu_2(f, a) + \frac{1}{2}\mu_3(f, a, a) - \frac{1}{3!}\mu_4(f, a, a, a) + \cdots = 0$$

Image: A Image: A

Higher gauge theory: L_{∞} -algebras

- Generalizations of Lie algebras
- L_{∞} -algebra:
 - a graded vector space $L = \oplus_n L_n$
 - with totally antisymmetric multilinear higher products $\mu_i: L^{\wedge i} \rightarrow L$ of degree 2 i
 - which satisfy certain identities (homotopy Jacobi), e.g. $\mu_1\circ\mu_1=0$
- elements $a \in L_1$ of degree 1 are generalized gauge potentials
- curvature: $f := \mu_1(a) + \frac{1}{2}\mu_2(a,a) + \frac{1}{3!}\mu_3(a,a,a) + \dots \in L_2$
- Bianchi identity

$$\mu_1(f) - \mu_2(f, a) + \frac{1}{2}\mu_3(f, a, a) - \frac{1}{3!}\mu_4(f, a, a, a) + \cdots = 0$$

• elements $\in L_0$ parametrize generalized gauge transformations

Higher gauge theory

 $\bullet\,$ In higher gauge theory we have an underlying $L_\infty\mbox{-algebra}\,L$ and spacetime manifold M

I ≡ ▶ < </p>

Higher gauge theory

- In higher gauge theory we have an underlying $L_\infty\mbox{-algebra}\ L$ and spacetime manifold M
- We construct the tensor product $\hat{L} = \Omega^{\bullet}(M) \otimes L$
- \hat{L} is an L_{∞} -algebra as well

Higher gauge theory

- In higher gauge theory we have an underlying $L_\infty\mbox{-algebra}\ L$ and spacetime manifold M
- We construct the tensor product $\hat{L} = \Omega^{\bullet}(M) \otimes L$
- \hat{L} is an L_{∞} -algebra as well
 - gauge potentials

 $A + B + \cdots \in \hat{L}_1 = (\Omega^1(M) \otimes L_0) \oplus (\Omega^2(M) \otimes L_{-1}) \oplus \cdots$

• higher products $\hat{\mu}_1 = \mathrm{d} + \mu_1$, μ_2 , μ_3

Higher gauge theory

- In higher gauge theory we have an underlying $L_\infty\mbox{-algebra}\ L$ and spacetime manifold M
- We construct the tensor product $\hat{L} = \Omega^{\bullet}(M) \otimes L$
- \hat{L} is an L_{∞} -algebra as well
 - gauge potentials $A + B + \cdots \in \hat{L}_1 = (\Omega^1(M) \otimes L_0) \oplus (\Omega^2(M) \otimes L_{-1}) \oplus \cdots$
 - higher products $\hat{\mu}_1 = \mathrm{d} + \mu_1$, μ_2 , μ_3
 - curvatures

$$\mathcal{F} = F + \mu_1(B) = dA + \frac{1}{2}\mu_2(A, A) + \mu_1(B)$$

$$H = dB + \mu_2(A, B) - \frac{1}{3!}\mu_3(A, A, A) + \dots$$

Higher gauge theory: string structures

- Problem: consistency requires fake flatness
 F = dA + ½μ₂(A, A) + μ₁(B) = 0
 trivial (only topological)
- Solution: modification = string structures
 - String Lie 2-algebra: $\mathfrak{string}(n) = \mathbb{R}[1] \to \mathfrak{g}(n)$

$$\mu_2(x_1, x_2) = [x_1, x_2], \quad \mu_3(x_1, x_2, x_3) = (x_1, [x_2, x_3])$$

• Curvatures:

$$\begin{aligned} \mathcal{F} &= F + \mu_1(B) = dA + \frac{1}{2}\mu_2(A, A) + \mu_1(B) \\ H &= dB + \mu_2(A, B) - \frac{1}{3!}\mu_3(A, A, A) + (A, \mathcal{F}) \\ &= dB + cs(A) \end{aligned}$$

• (2,0)-theory:

æ

・聞き ・ ほき・ ・ ほき

(1,0)-theory

- 4 回 > - 4 回 > - 4 回 >

æ
(1,0)-theory

- (2,0)-theory:
 - $M = \mathbb{R}^{1,5}$
 - SCFT with (2,0) SUSY
 - Field content includes 2-form *B* field which satisfies the *self-duality equation*: *H* := d*B* = **H*

- ₹ 🖹 🕨

(1,0)-theory

- (2,0)-theory:
 - $M = \mathbb{R}^{1,5}$
 - SCFT with (2,0) SUSY
 - Field content includes 2-form B field which satisfies the self-duality equation: H := dB = ★H
- (1,0)-theory:

< ∃ >

(1,0)-theory

- (2,0)-theory:
 - $M = \mathbb{R}^{1,5}$
 - SCFT with (2,0) SUSY
 - Field content includes 2-form B field which satisfies the self-duality equation: H := dB = ★H
- (1,0)-theory:
 - $M = \mathbb{R}^{1,5}$

< ∃ >

(1,0)-theory

- (2,0)-theory:
 - $M = \mathbb{R}^{1,5}$
 - SCFT with (2,0) SUSY
 - Field content includes 2-form *B* field which satisfies the *self-duality equation*: *H* := d*B* = **H*
- (1,0)-theory:
 - $M = \mathbb{R}^{1,5}$
 - SCFT with (1,0) SUSY
 - 2-form B field, $H := dB = \star H$

(1,0)-theory

- (2,0)-theory:
 - $M = \mathbb{R}^{1,5}$
 - SCFT with (2,0) SUSY
 - Field content includes 2-form B field which satisfies the self-duality equation: H := dB = ★H
- (1,0)-theory:
 - $M = \mathbb{R}^{1,5}$
 - SCFT with (1,0) SUSY
 - 2-form B field, $H := dB = \star H$
 - Simpler theory, less constrained, study that

(1,0)-theory

- (2,0)-theory:
 - $M = \mathbb{R}^{1,5}$
 - SCFT with (2,0) SUSY
 - Field content includes 2-form B field which satisfies the self-duality equation: $H := dB = \star H$
- (1,0)-theory:
 - $M = \mathbb{R}^{1,5}$
 - SCFT with (1,0) SUSY
 - 2-form B field, $H := dB = \star H$
 - Simpler theory, less constrained, study that
 - **Task:** find Lagrangian gauge invariant, (1,0) SUSY, produce the right EOMs
 - Methods: HGT, Lagrange multipliers for self-duality

(1, 0)-theory

The string structure underlying (1,0)-theory is the following.

(1, 0)-theory

We also have the maps

$$\mu_2:\mathfrak{g}_t\wedge\mathfrak{g}_t\to\mathfrak{g}_t$$
, $\mu_2(t_1,t_2)=[t_1,t_2]$,

P

3

Э

æ

(1, 0)-theory

We also have the maps

$$\begin{split} \mu_2 &: \mathfrak{g}_t \wedge \mathfrak{g}_t \to \mathfrak{g}_t \ , \\ \mu_2 &: \mathfrak{g}_t \wedge \mathfrak{g}_u^* \to \mathfrak{g}_u^* \ , \\ \mu_2 &: \mathfrak{g}_t \wedge \mathfrak{g}_v^* \to \mathfrak{g}_v^* \ , \end{split}$$

$$\begin{split} \mu_2(t_1, t_2) &= [t_1, t_2] ,\\ \mu_2(t, u) &= u([-, t]) ,\\ \mu_2(t, v) &= v([-, t]) , \end{split}$$

P

3

Э

æ

(1, 0)-theory

We also have the maps

$$\begin{split} & \mu_2 : \mathfrak{g}_t \wedge \mathfrak{g}_t \to \mathfrak{g}_t \ , \\ & \mu_2 : \mathfrak{g}_t \wedge \mathfrak{g}_u^* \to \mathfrak{g}_u^* \ , \\ & \mu_2 : \mathfrak{g}_t \wedge \mathfrak{g}_v^* \to \mathfrak{g}_v^* \ , \\ & \mu_3 : \mathfrak{g}_t \wedge \mathfrak{g}_t \wedge \mathfrak{g}_t \to \mathbb{R}_r \ , \\ & \mu_3 : \mathfrak{g}_t \wedge \mathfrak{g}_t \wedge \mathbb{R}_s^* \to \mathfrak{g}_u^* \ , \end{split}$$

$$\begin{split} \mu_2(t_1, t_2) &= [t_1, t_2] ,\\ \mu_2(t, u) &= u([-, t]) ,\\ \mu_2(t, v) &= v([-, t]) ,\\ \mu_3(t_1, t_2, t_3) &= (t_1, [t_2, t_3]) ,\\ \mu_3(t_1, t_2, s) &= s((-, [t_1, t_2])) , \end{split}$$

- ● ● ●

æ

Э

(1, 0)-theory

We also have the maps

$$\begin{split} & \mu_2: \mathfrak{g}_t \wedge \mathfrak{g}_t \to \mathfrak{g}_t \ , \\ & \mu_2: \mathfrak{g}_t \wedge \mathfrak{g}_u^* \to \mathfrak{g}_u^* \ , \\ & \mu_2: \mathfrak{g}_t \wedge \mathfrak{g}_v^* \to \mathfrak{g}_v^* \ , \\ & \mu_3: \mathfrak{g}_t \wedge \mathfrak{g}_t \wedge \mathfrak{g}_t \to \mathbb{R}_r \ , \\ & \mu_3: \mathfrak{g}_t \wedge \mathfrak{g}_t \wedge \mathbb{R}_s^* \to \mathfrak{g}_u^* \ , \end{split}$$

$$\begin{split} \mu_2(t_1, t_2) &= [t_1, t_2] ,\\ \mu_2(t, u) &= u([-, t]) ,\\ \mu_2(t, v) &= v([-, t]) ,\\ \mu_3(t_1, t_2, t_3) &= (t_1, [t_2, t_3]) ,\\ \mu_3(t_1, t_2, s) &= s((-, [t_1, t_2]))) , \end{split}$$

as well as

$$\begin{split} \nu_2 : \mathfrak{g}_t \otimes \mathfrak{g}_t &\to \mathbb{R}_r \ , \\ \nu_2 : \mathfrak{g}_t \otimes \mathfrak{g}_u^* &\to \mathfrak{g}_v^* \ , \\ \nu_3 : \mathfrak{g}_t \wedge \mathfrak{g}_t \wedge \mathbb{R}_s^* &\to \mathfrak{g}_v^* \ , \end{split}$$

$$egin{aligned} &
u_2(t_1,t_2) = (t_1,t_2) \;, \ &
u_2(t_1,u_1) = u_1ig([-,t_1]ig) \;, \ &
u_3(t_1,t_2,s) = sig(-,[t_1,t_2]ig) \;. \end{aligned}$$

æ

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶

(1, 0)-theory

The local description of a connection on this string structure then consists of gauge potential forms

$$egin{aligned} A \in \Omega^1(\mathbb{R}^{1,5}) \otimes (\mathfrak{g}_t \oplus \mathbb{R}_p^*) \ , \ C \in \Omega^3(\mathbb{R}^{1,5}) \otimes (\mathfrak{g}_u^* \oplus \mathbb{R}_q) \ , \end{aligned}$$

$$egin{aligned} B \in \Omega^2(\mathbb{R}^{1,5}) \otimes (\mathbb{R}_r \oplus \mathbb{R}^*_s) \ , \ D \in \Omega^4(\mathbb{R}^{1,5}) \otimes \mathfrak{g}^*_{v} \end{aligned}$$

-

(1, 0)-theory

The local description of a connection on this string structure then consists of gauge potential forms

$$egin{aligned} &A\in \Omega^1(\mathbb{R}^{1,5})\otimes (\mathfrak{g}_t\oplus\mathbb{R}_p^*)\;,\qquad B\in \Omega^2(\mathbb{R}^{1,5})\otimes (\mathbb{R}_r\oplus\mathbb{R}_s^*)\;,\ &C\in \Omega^3(\mathbb{R}^{1,5})\otimes (\mathfrak{g}_u^*\oplus\mathbb{R}_q)\;,\qquad D\in \Omega^4(\mathbb{R}^{1,5})\otimes \mathfrak{g}_v^* \end{aligned}$$

and the corresponding curvatures are defined as

$$\begin{split} F &= \mathrm{d}A + \frac{1}{2}\mu_2(A,A) + \mu_1(B) &\in \Omega^2 \otimes \left(\mathfrak{g}_t \oplus \mathbb{R}_p^*\right), \\ H &= \mathrm{d}B + (A,\mathrm{d}A) + \frac{1}{3}(A,\mu_2(A,A)) - \mu_1(C) &\in \Omega^3 \otimes \left(\mathbb{R}_r \oplus \mathbb{R}_s^*\right), \end{split}$$

(1, 0)-theory

The local description of a connection on this string structure then consists of gauge potential forms

$$egin{aligned} &A\in \Omega^1(\mathbb{R}^{1,5})\otimes (\mathfrak{g}_t\oplus \mathbb{R}_p^*)\;, \qquad B\in \Omega^2(\mathbb{R}^{1,5})\otimes (\mathbb{R}_r\oplus \mathbb{R}_s^*)\;, \ &C\in \Omega^3(\mathbb{R}^{1,5})\otimes (\mathfrak{g}_u^*\oplus \mathbb{R}_q)\;, \qquad D\in \Omega^4(\mathbb{R}^{1,5})\otimes \mathfrak{g}_v^* \end{aligned}$$

and the corresponding curvatures are defined as

$$\begin{split} F &= \mathrm{d}A + \frac{1}{2}\mu_2(A,A) + \mu_1(B) &\in \Omega^2 \otimes \left(\mathfrak{g}_t \oplus \mathbb{R}_p^*\right), \\ H &= \mathrm{d}B + (A,\mathrm{d}A) + \frac{1}{3}(A,\mu_2(A,A)) - \mu_1(C) &\in \Omega^3 \otimes \left(\mathbb{R}_r \oplus \mathbb{R}_s^*\right), \\ G &= \mathrm{d}C + \mu_2(A,C) + \frac{1}{2}\mu_3(A,A,B) + \mu_1(D) &\in \Omega^4 \otimes \left(\mathfrak{g}_u^* \oplus \mathbb{R}_q\right), \\ I &= \mathrm{d}D + \mu_2(A,D) + \nu_2(F,C) + \frac{1}{2}\nu_3(A,A,H) \\ &+ \nu_3(F,A,B) &\in \Omega^5 \otimes \mathfrak{g}_v^* . \end{split}$$

String structures

The curvatures satisfy Bianchi identities

$$dF + \mu_2(A, F) - \mu_1(H) = 0, \qquad dH - \nu_2(F, F) + \mu_1(G) = 0, dG + \mu_2(A, G) - \mu_1(I) = 0, \qquad dI + \mu_2(A, I) - \nu_2(F, G) = 0.$$

String structures

The curvatures satisfy Bianchi identities

$$dF + \mu_2(A, F) - \mu_1(H) = 0, \qquad dH - \nu_2(F, F) + \mu_1(G) = 0, dG + \mu_2(A, G) - \mu_1(I) = 0, \qquad dI + \mu_2(A, I) - \nu_2(F, G) = 0.$$

Finally, we also have the evident pairings

$$\langle -, - \rangle : \mathfrak{g}_{u}^{*} \times \mathfrak{g}_{t} \to \mathbb{R} \ , \quad \mathbb{R}_{s}^{*} \times \mathbb{R}_{r} \to \mathbb{R} \ , \quad \mathbb{R}_{p}^{*} \times \mathbb{R}_{q} \to \mathbb{R} \ .$$

Field content of (1,0)-theory

multiplet	symbol	field type	values in	SUSY transformation $\delta_{\mathrm{SUSY},0}$
vector	$\begin{array}{c} A \\ \lambda^i \\ \gamma^{(ij)} \end{array}$	1-form MW spinors aux. scalars	$egin{aligned} \mathfrak{g}_t \oplus \mathbb{R}^*_p \ \mathfrak{g}_t \oplus \mathbb{R}^*_p \ \mathfrak{g}_t \oplus \mathbb{R}^*_p \end{aligned}$	$ \begin{array}{l} -\bar{\varepsilon}\gamma_{(1)}\lambda \\ \frac{1}{4}\not\!$
tensor	$B \\ \chi^i \\ \phi$	2-form MW spinors scalar field	$\mathbb{R}_r \oplus \mathbb{R}_s^*$ $\mathbb{R}_r \oplus \mathbb{R}_s^*$ $\mathbb{R}_r \oplus \mathbb{R}_s^*$	$\begin{array}{l} -\bar{\varepsilon}\gamma_{(2)}\chi-\nu_{2}(\delta_{\mathrm{SUSY}}A,A)\\ \frac{1}{8}\not\!\!\!/ \mathcal{B}\varepsilon^{i}+\frac{1}{4}\not\!\!/ \phi\varepsilon^{i}-\frac{1}{2}\nu_{2}(\gamma^{\mu}\lambda^{i},\bar{\varepsilon}\gamma_{\mu}\lambda)\\ \bar{\varepsilon}\chi\end{array}$
none	C D	3-form 4-form	$\mathfrak{g}_{u}^{*}\oplus \mathbb{R}_{q} \ \mathfrak{g}_{v}^{*}$	$ \begin{aligned} \nu_2(\bar{\varepsilon}\gamma_{(3)}\lambda,\phi) &- \nu_2(\delta_{\mathrm{SUSY}}A,B) \\ &- \nu_2(\delta_{\mathrm{SUSY}}A,C) \end{aligned} $

∃ → < ∃</p>

Equations of motion

Closure of SUSY algebra requires these eoms which had to be previously imposed by hand.

-

Equations of motion

Closure of SUSY algebra requires these eoms which had to be previously imposed by hand.

Self-duality equation

$$\mathscr{H} := \frac{1}{2}(H - \star H) + \nu_2(\bar{\lambda}, \gamma_{(3)}\lambda) = 0$$

< ∃ →

Equations of motion

Closure of SUSY algebra requires these eoms which had to be previously imposed by hand.

Self-duality equation

$$\mathscr{H} := \frac{1}{2}(H - \star H) + \nu_2(\bar{\lambda}, \gamma_{(3)}\lambda) = 0$$

Higher curvatures vanishing

$$\begin{aligned} \mathscr{G} &:= G - \nu_2(\star F, \phi) + 2\nu_2(\bar{\lambda}, \star \gamma_{(2)}\chi) = 0 \\ \mathscr{I} &:= I + 2\nu_3(\bar{\lambda}, \star \gamma_{(1)}\lambda, \phi) = 0 \end{aligned}$$

< ∃ >

(1,0) Lagrangian

$$\begin{split} \mathcal{L}^{(1,0)} &= -\langle \mathrm{d}\phi, \star \mathrm{d}\phi \rangle - 4\mathrm{vol}\langle \bar{\chi}, \not \partial \chi \rangle \\ &+ \langle \phi, \nu_2(F, \star F) - 2\mathrm{vol} \ \nu_2(Y_{ij}, Y^{ij}) + 4\mathrm{vol} \ \nu_2(\bar{\lambda}, \nabla \lambda) \rangle \\ &+ 4 \langle \bar{\chi}, \nu_2(F, \lambda) \rangle - 8\mathrm{vol} \langle \bar{\chi}^j, \nu_2(Y_{ij}, \lambda^i) \rangle \\ &- H_s \wedge \star \mathscr{H}_r + H_s \wedge C_q \end{split}$$

• supplies other eoms

æ

< E

(1,0) Lagrangian

$$\begin{split} \mathcal{L}^{(1,0)} &= -\langle \mathrm{d}\phi, \star \mathrm{d}\phi \rangle - 4\mathrm{vol}\langle \bar{\chi}, \not \partial \chi \rangle \\ &+ \langle \phi, \nu_2(F, \star F) - 2\mathrm{vol} \ \nu_2(Y_{ij}, Y^{ij}) + 4\mathrm{vol} \ \nu_2(\bar{\lambda}, \nabla \lambda) \rangle \\ &+ 4 \langle \bar{\chi}, \nu_2(F, \lambda) \rangle - 8\mathrm{vol} \langle \bar{\chi}^j, \nu_2(Y_{ij}, \lambda^i) \rangle \\ &- H_s \wedge \star \mathscr{H}_r + H_s \wedge C_q \end{split}$$

- supplies other eoms
- Does not produce self-duality equation nor vanishing of curvatures - has to be assumed.

(1,0) Lagrangian

$$\begin{split} \mathcal{L}^{(1,0)} &= -\langle \mathrm{d}\phi, \star \mathrm{d}\phi \rangle - 4\mathrm{vol}\langle \bar{\chi}, \not \partial \chi \rangle \\ &+ \langle \phi, \nu_2(F, \star F) - 2\mathrm{vol} \ \nu_2(Y_{ij}, Y^{ij}) + 4\mathrm{vol} \ \nu_2(\bar{\lambda}, \not \nabla \lambda) \rangle \\ &+ 4 \langle \bar{\chi}, \nu_2(\not F, \lambda) \rangle - 8\mathrm{vol} \langle \bar{\chi}^j, \nu_2(Y_{ij}, \lambda^i) \rangle \\ &- H_s \wedge \star \mathscr{H}_r + H_s \wedge C_q \end{split}$$

- supplies other eoms
- Does not produce self-duality equation nor vanishing of curvatures has to be assumed.
- Use Sen's Lagrange multiplier approach

Lagrange multipliers

Idea:

• Find stationary points of f(x) subject to the constraint g(x) = 0

I ≡ →

∃ >

Lagrange multipliers

Idea:

- Find stationary points of f(x) subject to the constraint g(x) = 0
- Form $\mathcal{L}(x, y) = f(x) yg(x)$ and find stationary points

伺 ト く ヨ ト く ヨ ト

Lagrange multipliers

Idea:

- Find stationary points of f(x) subject to the constraint g(x) = 0
- Form $\mathcal{L}(x, y) = f(x) yg(x)$ and find stationary points

This has been employed recently by Sen to impose self-duality.

Lagrange multipliers

Idea:

- Find stationary points of f(x) subject to the constraint g(x) = 0
- Form $\mathcal{L}(x, y) = f(x) yg(x)$ and find stationary points

This has been employed recently by Sen to impose self-duality.

Lagrange multipliers

Consider a <u>self-dual</u> 3-form $\beth_s = \star \beth_s \in \Omega^3(\mathbb{R}^{1,5}) \otimes \mathbb{R}^*_s$ and form

$$\mathcal{L}_{\beth} = -H_s \wedge \star \mathscr{H}_r + H_s \wedge C_q - \beth_s \wedge \mathscr{H}_r$$
.

伺 ト く ヨ ト く ヨ ト

Lagrange multipliers

Consider a <u>self-dual</u> 3-form $\beth_s = \star \beth_s \in \Omega^3(\mathbb{R}^{1,5}) \otimes \mathbb{R}^*_s$ and form

$$\mathcal{L}_{\beth} = -H_s \wedge \star \mathscr{H}_r + H_s \wedge C_q - \beth_s \wedge \mathscr{H}_r$$
.

• Variation w.r.t. \beth_s gives $\mathscr{H}_r = 0$ as an eom.

同 ト イ ヨ ト イ ヨ ト

Lagrange multipliers

Consider a <u>self-dual</u> 3-form $\beth_s = \star \beth_s \in \Omega^3(\mathbb{R}^{1,5}) \otimes \mathbb{R}^*_s$ and form

$$\mathcal{L}_{\beth} = -H_s \wedge \star \mathscr{H}_r + H_s \wedge C_q - \beth_s \wedge \mathscr{H}_r$$
.

- Variation w.r.t. \beth_s gives $\mathscr{H}_r = 0$ as an eom.
- Variation w.r.t. C_q gives $\mathscr{H}_s = 0$ and $\beth_s = 0$.

A B > A B >

Lagrange multipliers

Consider a <u>self-dual</u> 3-form $\beth_s = \star \beth_s \in \Omega^3(\mathbb{R}^{1,5}) \otimes \mathbb{R}_s^*$ and form

$$\mathcal{L}_{\beth} = -H_s \wedge \star \mathscr{H}_r + H_s \wedge C_q - \beth_s \wedge \mathscr{H}_r$$
.

- Variation w.r.t. \beth_s gives $\mathscr{H}_r = 0$ as an eom.
- Variation w.r.t. C_q gives $\mathscr{H}_s = 0$ and $\beth_s = 0$.
- Variation w.r.t. B_s gives $\mathscr{G}_q = 0$.

→ Ξ →

Lagrange multipliers

Obtain $\mathscr{G}_u = 0$ by introducing an auxiliary 2-form $\exists_t \in \Omega^2(\mathbb{R}^{1,5}) \otimes \mathfrak{g}_t$ and form

$$\mathcal{L}_{\exists} = \mathscr{G}_{u}(\exists_{t}) - B_{s} \wedge (\exists_{t}, \exists_{t}) + \phi_{s}(\exists_{t}, \star \exists_{t})$$

(*) *) *) *)

Lagrange multipliers

Obtain $\mathscr{G}_u = 0$ by introducing an auxiliary 2-form $\exists_t \in \Omega^2(\mathbb{R}^{1,5}) \otimes \mathfrak{g}_t$ and form

$$\mathcal{L}_{\exists} = \mathscr{G}_{u}(\exists_{t}) - B_{s} \wedge (\exists_{t}, \exists_{t}) + \phi_{s}(\exists_{t}, \star \exists_{t})$$

- Produces $\mathscr{G}_u = 0$ and $\exists_t = 0$.
- Extra terms required for SUSY.

< ∃ > <

Supersymmetry

To ensure SUSY of $S = \int \mathcal{L}$ we need to modify SUSY transformations of certain fields.

< ∃ →

Supersymmetry

To ensure SUSY of $S = \int \mathcal{L}$ we need to modify SUSY transformations of certain fields. Introducting $\delta_{SUSY} = \delta_{SUSY,0} + \delta_{SUSY,1}$,

•
$$\delta_{\text{SUSY},1} \chi_s = -\frac{1}{8} \not\!\!\!\! \mathcal{I}_s \varepsilon$$
,

< ∃ >

Supersymmetry

To ensure SUSY of $S = \int \mathcal{L}$ we need to modify SUSY transformations of certain fields. Introducting $\delta_{SUSY} = \delta_{SUSY,0} + \delta_{SUSY,1}$,

•
$$\delta_{\text{SUSY},1} \chi_s = -\frac{1}{8} \mathbb{Z}_s \varepsilon$$
,

•
$$\delta_{\mathrm{SUSY},1} \lambda_t = -\frac{1}{4} \mathcal{J}_t \varepsilon$$
,

< ∃ >
Supersymmetry

To ensure SUSY of $S = \int \mathcal{L}$ we need to modify SUSY transformations of certain fields. Introducting $\delta_{SUSY} = \delta_{SUSY,0} + \delta_{SUSY,1}$,

- $\delta_{\mathrm{SUSY},1} \, \chi_s = -\frac{1}{8} \not\!\!\! \mathbb{Z}_s \varepsilon$,
- $\delta_{\text{SUSY},1} \lambda_t = -\frac{1}{4} \mathcal{T}_t \varepsilon$,

•
$$\delta_{\mathrm{SUSY},1} C_q = 2\nu_2(\delta A_t, \exists_t)$$
,

Supersymmetry

To ensure SUSY of $S = \int \mathcal{L}$ we need to modify SUSY transformations of certain fields. Introducting $\delta_{SUSY} = \delta_{SUSY,0} + \delta_{SUSY,1}$,

- $\frac{1}{2}$
 - $\delta_{\text{SUSY},1} \chi_s = -\frac{1}{8} \varkappa_s \varepsilon$,
 - $\delta_{\text{SUSY},1} \lambda_t = -\frac{1}{4} \mathcal{J}_t \varepsilon$,
 - $\delta_{\mathrm{SUSY},1} C_q = 2\nu_2(\delta A_t, \neg_t)$,
 - Also $\delta_{SUSY} \beth_s = 0$, $\delta_{SUSY} \urcorner_t = 0$.
 - SUSY algebra closes on-shell thanks to $\beth_s = 0$ and $\neg_t = 0$.

The full Lagrangian

We present the fully supersymmetric, and non-trivially interacting higher gauge theory which produces $\mathscr{H} = \mathscr{G} = \mathscr{I} = 0$ as equations of motion.

$$\begin{aligned} \mathcal{L}^{(1,0)} &= -\langle \mathrm{d}\phi, \star \mathrm{d}\phi \rangle - 4\mathrm{vol}\langle \bar{\chi}, \not \partial \chi \rangle \\ &+ \langle \phi, \nu_2(F, \star F) - 2\mathrm{vol} \ \nu_2(Y_{ij}, Y^{ij}) + 4\mathrm{vol} \ \nu_2(\bar{\lambda}, \nabla \lambda) \rangle \\ &+ 4\langle \bar{\chi}, \nu_2(F, \lambda) \rangle - 8\mathrm{vol}\langle \bar{\chi}^j, \nu_2(Y_{ij}, \lambda^i) \rangle \\ &- H_s \wedge \star \mathscr{H}_r + H_s \wedge C_q - \beth_s \wedge \mathscr{H}_r \\ &+ \mathscr{G}_u(\beth_t) - B_s \wedge (\beth_t, \beth_t) + \phi_s(\beth_t, \star \beth_t) \end{aligned}$$

→ Ξ →

Outlook

- Study this model further
- Show conformality at the quantum level
- Quantum field theory

The End

Thank you for your attention!

æ

< E