Motivation o	The QCD Instanton	The Instanton cross section	Phenomenology	Summary O

QCD Instantons at Colliders

Based on [2010.02287] with Valya Khoze and Michael Spannowsky

Institute of Particle Physics Phenomenology Durham University

QCD Instantons at Colliders

Durham University

= 990

イロト 不得 とくほ とくほとう

Motivation	The QCD Instanton	The Instanton cross section	Phenomenology	Summary o

Outline

- Motivation
- QCD Instanton
- Cross section calculation
- Collider phenomenology

イロト イポト イヨト イヨト

Motivation	The QCD Instanton	The Instanton cross section	Phenomenology	Summary o

Motivation

- Prediction of the Standard Model.
- Better understanding of non-abelian gauge theories.
- Could be important in the early universe.
- Related to the vacuum structure of the Standard Model.
- Also important in BSM theories such as SUSY.

イロト イポト イヨト イヨト

Motivation	The QCD Instanton	The Instanton cross section	Phenomenology	Summary
0	•00	0000000000	0000000	0

The QCD vacuum

Instantons are solutions of the classical equations of motion which tunnel between degenerate vacua.

$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} - [A_{\mu}, A_{\nu}] = 0$$

This is satisfied when A_{μ} is a pure gauge.

$$A_{\mu}\left(x
ight)=iU^{\dagger}\partial_{\mu}U\quad U\in\mathcal{SU}(2)$$

At large x, the field strength tensor must vanish so this defines a map

$$f: S^3 \rightarrow SU(2)$$

Borrowing results from topology such maps are categorised by $\Pi_3(S^3) \sim \mathbb{Z}$ [Belavin et al., 1975].

ヘロン 人間 とくほと くほど

Motivation	The QCD Instanton	The Instanton cross section	Phenomenology	Summary
0	000	0000000000	0000000	0

The explicit form of the instanton

$$D_{\mu} \tilde{F}_{\mu
u} = rac{1}{2} arepsilon_{\mu
u
u
ho\sigma} D_{\mu} F_{
ho\sigma}$$

 $= rac{1}{6} arepsilon_{\mu
u
ho\sigma} (D_{\mu} F_{
ho\sigma} + D_{
ho} F_{\sigma\mu} + D_{\sigma} F_{\mu
ho}) \equiv 0.$

Hence the explicit form of the instanton is [Belavin et al., 1975]

$$A^{a}_{\mu} = rac{2}{g} \eta_{a\mu
u} rac{(x-x_{0})_{
u}}{(x-x_{0})^{2} +
ho^{2}}$$

where

$$\eta_{a\mu\nu} = \begin{cases} \varepsilon_{a\mu\nu} & 1 \le \mu, \nu \le 3 \\ -\delta_{a\nu} & \mu = 4, 1 \le \nu \le 3 \\ \delta_{a\mu} & \nu = 4, 1 \le \mu \le 3 \\ 0 & \mu, \nu = 4 \end{cases}.$$

QCD Instantons at Colliders

Durham University

Motivation	The QCD Instanton	The Instanton cross section	Phenomenology	Summary
0	000	0000000000	0000000	0

Expansion around the saddle point

Topological charge is given by

$$\int d^4x extsf{Tr}\left(m{ extsf{F}}_{\mu
u} ilde{m{ extsf{F}}}_{\mu
u}
ight) = rac{32\pi^2 Q}{g^2}$$

and simply performing this integral, the instanton has topological charge 1.

To calculate the cross section for instanton processes we expand around the instanton solution:

$$\int DA \, e^{-S} = e^{-S_0} \int DA \, e^{-A \Box A} = e^{-S_0} \frac{1}{\det^{\frac{1}{2}} (\Box)}$$

where $S_0 = \frac{2\pi}{\alpha}$ and $\Box = \frac{\delta^2 S}{\delta A^2}$. If \Box has zero modes then $\frac{1}{\det^{\frac{1}{2}}(\Box)} \rightarrow \frac{d\tau}{\det'^{\frac{1}{2}}(\Box)}$.

Motivation o	The QCD Instanton	The Instanton cross section	Phenomenology	Summary o

The Instanton process

The main instanton process is

$$g \,+\, g \,
ightarrow \sum_{i=1}^{N_f} \left(q^0_R + ar q^0_L
ight) \,+\, n_g \,g.$$

The number of fermions is determined by both the number of zero modes (coming from $(-i\not D - im)\psi = 0$) and the Adler-Bell-Jackiw anomaly.

$$\partial_{\mu}j^{\mu} = rac{N_{f}g^{2}}{16\pi^{2}} \operatorname{Tr}\left(F_{\mu\nu}\tilde{F}_{\mu\nu}\right) \implies \Delta Q_{A} = 2N_{f}\Delta Q_{T}$$

where

$$j^{\mu} = \bar{\psi}\gamma^{\mu}\gamma^{5}\psi$$

QCD Instantons at Colliders

Durham University

ヘロア 人間 アメヨア 人口 ア

Motivation	The QCD Instanton	The Instanton cross section	Phenomenology	Summary
0	000	0000000000	0000000	0

The master integral

The instanton cross section can be calculated through the use of the optical theorem

$$\sigma_{TOT}^{I} = \frac{1}{s'} \operatorname{Im} \mathcal{M} \left(p_1, p_2, -p_1, -p_2 \right)$$

This is given by [Khoze et al., 2020]

$$\hat{\sigma}_{\text{tot}}^{\text{inst}} \simeq \frac{1}{E^2} \operatorname{Im} \frac{\kappa^2 \pi^4}{36 \cdot 4} \int \frac{d\rho}{\rho^5} \int \frac{d\bar{\rho}}{\bar{\rho}^5} \int d^4 R \int d\Omega \left(\frac{2\pi}{\alpha_s(\mu_r)}\right)^{14} (\rho^2 E)^2 (\bar{\rho}^2 E)^2 \mathcal{K}_{\text{ferm}}(z) (\rho\mu_r)^{b_0} (\bar{\rho}\mu_r)^{b_0}$$

$$\exp\left(R_0E - \frac{4\pi}{\alpha_s(\mu_r)}\mathcal{S}(z) - \frac{\alpha_s(\mu_r)}{16\pi}(\rho^2 + \bar{\rho}^2)E^2\log\frac{E^2}{\mu_r^2}\right)$$

イロト イポト イヨト イヨト

Motivation	The QCD Instanton	The Instanton cross section	Phenomenology	Summary
0	000	000000000	0000000	0

LSZ procedure

$${\it A}^{a}_{\mu}({\it
ho})=rac{4i\pi^{2}
ho^{2}}{g}rac{\eta^{a}_{\mu
u}{\it
ho}_{
u}}{\it
ho^{2}}e^{\it ip.x_{0}}$$

$$\mathcal{A}_{LSZ}^{a}\left(
ho
ight) =\lim_{
ho^{2}
ightarrow0}
ho^{2}\epsilon^{\mu}\left(\lambda
ight) \mathcal{A}_{\mu}^{a}\left(
ho
ight) =\epsilon^{\mu}\left(\lambda
ight) ar{\eta}_{\mu
u}^{a}
ho_{
u}rac{4i\pi^{2}
ho^{2}}{g}e^{i
ho.x_{0}}$$

$$\sum_{\textit{spins,polarisations}} \textit{A}_{\mu}\left(\textit{p},\lambda\right)\textit{A}_{\mu}\left(-\textit{p},\lambda\right) = \frac{1}{6} \left(\frac{2\pi^{2}}{g}\rho^{2}\sqrt{s}\right)^{2}\textit{e}^{\textit{iR.p}}$$

(日) (四) (日) (日) (日)

Motivation	The QCD Instanton	The Instanton cross section	Phenomenology	Summary
0	000	000000000	0000000	0

The instanton–anti-instanton action

We want to solve

$$\epsilon^{2}(\tau) \mathbf{w}(\mathbf{x}, \tau) \frac{\partial \mathbf{A}_{\tau}}{\partial \tau} = \frac{\delta \mathbf{S}}{\delta \mathbf{A}} \Big|_{\mathbf{A} = \mathbf{A}_{\tau}}$$

Upon the ansatz:

$$A_{\mu} = \frac{-i}{g} \frac{\bar{\sigma}_{\mu} \sigma_{\nu} - \delta_{\mu\nu}}{(x - x_0)^2} (x - x_0)_{\nu} s((x - x_0)^2)$$

the action reduces to a quantum mechanical double-well

$$S_{YM} = \frac{48\pi^2}{g^2} \int dt \left(\left(\frac{ds}{dt} \right)^2 + \frac{1}{2} \left[\left(s - \frac{1}{2} \right)^2 - \frac{1}{4} \right]^2 \right)$$

It turns out that the sum of an instanton and an anti-instanton is numerically close to a numerical solution over the whole range of separations.

QCD Instantons at Colliders

Motivation o	The QCD Instanton	The Instanton cross section	Phenomenology	Summary 0

After substituting back into the gauge theory we get [Yung, 1988, Khoze and Ringwald, 1991]

$$S = \frac{48\pi^2}{g^2} \left[\frac{6z^2 - 14}{\left(z - \frac{1}{z}\right)^2} - \frac{17}{3} - \ln z \left(\frac{\left(z - \frac{5}{z}\right)\left(z + \frac{1}{z}\right)^2}{\left(z - \frac{1}{z}\right)^3} - 1 \right) \right]$$

where

$$z = \frac{R^2 + \rho_1^2 + \rho_2^2 + \sqrt{\left(R^2 + \rho_1^2 + \rho_2^2\right)^2 - 4\rho_1\rho_2}}{2\rho_1\rho_2}$$

・ロト ・ ア・ ・ ヨト ・ ヨト

Motivation o	The QCD Instanton	The Instanton cross section	Phenomenology	Summary o

The instanton density

$$\frac{\partial g}{\partial \log \mu} = -b_0 \frac{g^3}{16\pi^2} \implies \frac{8\pi^2}{g(\rho)^2} = \frac{8\pi^2}{g(\mu)^2} - b_0 \log(\mu\rho)$$

We also have the renormalisation constant ['t Hooft, 1976]

$$\kappa = rac{2 \, e^{5/6 - 1.511374 N_c}}{\pi^2 (N_c - 1)! (N_c - 2)!} \, e^{0.291746 N_f} \simeq 0.0025 \, e^{0.291746 N_f} \, ,$$

◆□ > ◆□ > ◆豆 > ◆豆 > -

Motivation o	The QCD Instanton	The Instanton cross section	Phenomenology	Summary o

Fermionic interactions

Assuming that the instanton and anti-instanton are well separated we have the fermionic overlap integral [Ringwald and Schrempp, 1998, Shuryak and Verbaarschot, 1992]:

Then

$$\mathcal{K}_{\textit{ferm}} = \omega_{\textit{ferm}}^{2N_{f}}$$

Durham University

Motivation	The QCD Instanton	The Instanton cross section	Phenomenology	Summary
0	000	00000000000	0000000	0

Initial state interactions

The gluon propagator in the instanton background is [Mueller, 1991a]

$$G^{ab}_{\mu
u}\left(p_{1},p_{2}
ight) = -rac{g^{2}
ho^{2}}{64\pi^{2}}s\log\left(s
ight) extsf{A}^{a}_{\mu}\left(p_{1}
ight) extsf{A}^{b}_{
u}\left(p_{2}
ight)$$

Insert this propogator in all possible ways and we find it exponentiates [Mueller, 1991b]

$$e^{-rac{lpha
ho^2}{16\pi}s\log(s)}A^a_\mu(p_1)\,A^b_
u(p_2)$$

QCD Instantons at Colliders

Durham University

Motivation The C	QCD Instanton	The Instanton cross section	Phenomenology	Summary
0 000) (000000000000000000000000000000000000000	0000000	0

Orientation integral and Dimensionless coordinates

The integral over the orientation is given by [Balitsky and Braun, 1993]

$$\int d\Omega \, e^{-\frac{4\pi}{\alpha_{\mathcal{S}}(\mu_{f})}\,\mathcal{S}(z,\Omega)} = \frac{1}{9\sqrt{\pi}} \left(\frac{3}{U_{\text{int}}(z)}\right)^{7/2} e^{-\frac{4\pi}{\alpha_{\mathcal{S}}(\mu_{f})}\,\mathcal{S}(z)} = \frac{1}{9\sqrt{\pi}} \left(\frac{3\,\alpha_{\mathcal{S}}(\mu_{f})}{4\pi(1-\mathcal{S}(z))}\right)^{7/2} e^{-\frac{4\pi}{\alpha_{\mathcal{S}}(\mu_{f})}\,\mathcal{S}(z)}$$

We define dimensionless integration variables

$$egin{aligned} r_0 &= R_0 E, \quad r &= |ec{R}| E \ y &=
ho ar{
ho} E^2, \quad x &= rac{
ho}{ar{
ho}} \end{aligned}$$

Durham University

イロト イポト イヨト イヨト

Motivation	The QCD Instanton	The Instanton cross section	Phenomenology	Summary
0	000	0000000000	0000000	0

Final integral

$$\hat{\sigma}_{tot}^{inst}(E) = \frac{1}{E^2} \operatorname{Im} \int_{-\infty}^{+\infty} dr_0 \, e^{r_0} \, G(r_0, E) \, ,$$

where

$$G(r_0, E) = \frac{\kappa^2 \pi^4}{2^{17}} \sqrt{\frac{\pi}{3}} \int_0^\infty r^2 dr \int_0^\infty \frac{dx}{x} \int_0^\infty \frac{dy}{y} \left(\frac{4\pi}{\alpha_s}\right)^{21/2} \left(\frac{1}{1-\mathcal{S}(z)}\right)^{7/2} \mathcal{K}_{\text{ferm}}(z) \exp\left(-\frac{4\pi}{\alpha_s} \mathcal{S}(z) - \frac{\alpha_s}{4\pi} \frac{x+1/x}{4} y \log y\right)$$

where

$$\frac{4\pi}{\alpha_s}(y; E) = \frac{4\pi}{0.416} + 2b_0 \log \frac{E}{1 \text{GeV}} - b_0 \log y.$$

QCD Instantons at Colliders

イロン イロン イヨン イヨン

Motivation o	The QCD Instanton	The Instanton cross section	Phenomenology	Summary 0

Numerical results

$$\sigma_{pp \to I}(\hat{s} > \hat{s}_{\min}) = \int_{\hat{s}_{\min}}^{s_{pp}} dx_1 dx_2 f(x_1, Q^2) f(x_2, Q^2) \hat{\sigma} (\hat{s} = x_1 x_2 s_{pp})$$

$\sqrt{\hat{s}}$	$\langle n_g \rangle$	$\hat{\sigma}_{ m tot}^{ m inst}$ [pb]	E_{\min}	$\sigma_{pp \rightarrow I}$
50	9.43	207.33×10 ³	50	58.19 μ b
100	11.2	1.29×10 ³	100	129.70 nb
150	12.22	53.1	150	2.769 nb
200	12.94	5.21	200	270.61 pb
300	13.96	165.73×10 ⁻³	300	3.04 pb
400	14.68	13.65×10 ⁻³	400	114.04 fb
500	15.23	1.89×10 ⁻³	500	8.293 fb

Motivation o	The QCD Instanton	The Instanton cross section	Phenomenology •oooooo	Summary o

Shape variables

Instanton events produce many jets and so will not stand out from the QCD background. We want to exploit the lack of angular dependence to search for the instanton signal. We use shape variables; define the sphericity tensor:

$$egin{aligned} \mathcal{S}^{lphaeta} &= rac{\sum_i oldsymbol{p}_i^lpha oldsymbol{p}_i^eta}{\sum_i ig| oldsymbol{p}_i ig|^2}. \ \mathcal{S} &= rac{3}{2} \left(\lambda_2 + \lambda_3
ight) \end{aligned}$$

Thrust:

$$\tau = 1 - \max_{\vec{n}} \frac{\sum_{i} \left| \vec{p}_{i} \cdot \vec{n} \right|}{\sum_{i} \left| \vec{p}_{i} \right|},$$

→ E > < E</p>

Motivation Th	he QCD Instanton	The Instanton cross section	Phenomenology	Summary
0 0		0000000000	000000	0

Distributions

QCD Instantons at Colliders

■ ト ■ つへの Durham University

Motivation o	The QCD Instanton	The Instanton cross section	Phenomenology	Summary o

Distributions cont.

QCD Instantons at Colliders

■ ト ■ つへの Durham University

Motivation o	The QCD Instanton	The Instanton cross section	Phenomenology	Summary o

Recoil from a jet

- There are two possibilities, the jet originates from the initial state or from the final state.
- The emission from the final state is suppressed by the phase space; instanton events are a priori spherically symmetric.
- To have a jet from the initial state, one of the initial state gluons would have to have some virtuality.
- This introduces the factor e^{-Q_ρ} into our previous calculation

ヘロト ヘワト ヘビト ヘビト

Motivation o	The QCD Instanton	The Instanton cross section	Phenomenology	Summary o

$\sqrt{\hat{s}}$ [GeV]	$\hat{\sigma}_{ m tot}^{ m inst}$ [pb]
310	3.42×10 ⁻²³
350	1.35×10 ⁻¹⁸
375	1.06×10 ⁻¹⁷
400	1.13×10 ⁻¹⁶
450	9.23×10 ⁻¹⁶
500	3.10×10^{-15}

$\sqrt{\hat{s}}$ [GeV]	$\hat{\sigma}_{ m tot}^{ m inst}$ [pb]
100	1.68×10 ⁻⁷
150	1.20×10 ⁻⁹
200	3.24×10 ⁻¹¹
300	1.84×10 ⁻¹³
400	4.38×10 ⁻¹⁵
500	2.38×10^{-16}

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

Motivation o	The QCD Instanton	The Instanton cross section	Phenomenology	Summary o

Tevatron

- We were not able to set any constraints on instanton production from the Tevatron
- However we found that triggers at the Tevatron would have recorded many instanton events
- Later selection criteria rendered the analyses insensitive to instantons.
- Mainly there was a trigger which required six jets each with p_T > 15 GeV
- Need to reanalyse old data with new selection criteria

ヘロン ヘアン ヘビン ヘビン

Motivation o	The QCD Instanton	The Instanton cross section	Phenomenology	Summary o

The LHC

- Triggers in ATLAS are insensitive to instantons
- ► Lowest unprescaled single jet trigger requires $p_T > 360 \text{ GeV}$, while lower p_T triggers, e.g. $p_T > 20 \text{ GeV}$ can be prescaled by 10^6 .
- Multijet triggers are also not sensitive e.g. six jets each with p_T > 45 GeV.
- However there was a low luminosity run, collecting 335pb⁻¹ of data with a minimum-bias trigger.
- This data was only used for luminosity determination but if we require six jets each with p_T > 10 GeV and τ > 0.2.
- ► Then we obtain $\frac{s}{\sqrt{b}} = 50.1$ CoM energies greater than 100 GeVand $\frac{s}{\sqrt{b}} = 7.1$ for energies greater than 200 GeV.

ヨンドヨン

Motivation o	The QCD Instanton	The Instanton cross section	Phenomenology	Summary •

Summary

- Instanton processes are a good further test of the standard model.
- Instantons cannot be constrained by existing Tevatron analyses.
- However Tevatron triggers were sensitive to instantons so a reanalysing the existing data could prove fruitful.
- Current triggers are not sensitive to QCD instantons so are unlikely to be discovered in Run 1 or 2 LHC data.
- Special low luminosity runs of the LHC potentially recorded many instanton events which could be separated from background using shape variables.

ヘロア 人間 アメヨア 人口 ア

Motivation o	The QCD Instanton	The Instanton cross section	Phenomenology	Summary ●

・ロ・・日・・日・ 日・ のへの

QCD Instantons at Colliders

Durham University