

YTF2020

PRECISE DETERMINATION OF CKM MATRIX ELEMENTS WITH LATTICE QCD+QED

(or: how I learned to stop worrying about non-perturbative QCD)

Andrew Z. N. Yong The University of Edinburgh 16th December 2020 THE UNIVERSITY

EDINBURGH

OVERVIEW

- 1. Introduction
- 2. Extracting CKM matrix elements
- 3. Lattice Formulation of QCD (feat. QED)
- 4. Strategy
- 5. Conclusion

INTRODUCTION

The Standard Model of Particle Physics has its successes (and problems)...

PHYSICISTENEY, WHEREDIDALLTHE ANTHMATTER GOP

Where do we go from here? Two ways:

1) High energy/luminosity

y 2) Quantum corrections in low-energy phenomena

Nicola Cabibbo

INTRODUCTION — CKM MATRIX

The interaction strength of flavor-changing weak decays in a 3×3 matrix

 $V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$

Makoto Kobayashi

$$\sum_{i} V_{ij} V_{ik}^* = \delta_{jk} \qquad \text{eg} \quad |V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$$

Toshihide Maskawa

...but is it?

Testing the unitarity of the CKM matrix is a probe for BSM physics in the flavor sector

EXTRACTING CKM MATRIX ELEMENTS

For a pseudoscalar, P^- , decaying into $l^- \overline{\nu}_l$ pair, the tree-level width is

$$\Gamma(P^- \to l^- \overline{\nu}_l) \equiv \Gamma_0^{\text{tree}} = \frac{G_F^2}{8\pi} \left| V_{q_1 q_2} \right|^2 f_P^2 m_{l^-}^2 \left(1 - \frac{m_{l^-}^2}{M_{P^-}^2} \right)^2.$$

$$\mathcal{A} \equiv \left< 0 \left| \bar{q}_2 \gamma^0 \gamma^5 q_1 \right| P^- \right> = M_P f_P$$

In practice, use inclusive rates from experiments

 $\mathcal{O}(\alpha)$ corrections

 $\Gamma(P^- \to l^- \overline{\nu}_l[\gamma]) = \Gamma_0^{\text{tree}} (1 + \delta R_P).$

Figure 1: A π^- decaying into a $\mu^- \bar{\nu}_{\mu}$ pair, possibly with a soft photon (in green) in the final state.

For example, the following ratio of CKM matrix elements can be obtained via:

$$\frac{|V_{us}|^2}{|V_{ud}|^2} = \frac{\Gamma(K^- \to \mu^- \overline{\nu}_{\mu}[\gamma])}{\Gamma(\pi^- \to \mu^- \overline{\nu}_{\mu}[\gamma])} \frac{M_{K^-}^3 (M_{\pi^-}^2 - m_{\mu^-}^2)^2}{M_{\pi^-}^3 (M_{K^-}^2 - m_{\mu^-}^2)^2} \frac{(f_{\pi}/f_K)^2}{1 + \delta R_K - \delta R_{\pi}}$$

Experiment

Theory

LATTICE QCD+QED

Your quintessential intro-to-lattice slide

An elegant idea first proposed by Kenneth Wilson in 1974 [1].

The central idea is two-fold:

- 1) to discretise 4D spacetime into a hypercube with finite lattice spacing and
- 2) to make the transition from `Minkowskian' to Euclidean field theory via **Wick** rotation, $t \rightarrow it$.

Then, the VEV of operators can be expressed with the path integral formalism:

$$\langle 0|O_1O_2\dots O_n|0\rangle = \frac{1}{Z}\int D\psi D\overline{\psi}DGDA \quad O_1O_2\dots O_n \quad e^{-S_f - S_G - S_A},$$

where $S_{f,G,A}$ are the fermion, gluon and photon action, respectively.

Figure 2: A pictorial representation of a lattice with spacing, a, and spatial extent, *L*. The quarks live on the sites (baubles) and the gauge fields are the links connecting the sites. LATTICE QCD+QED

Lattice simulations performed in isospin-symmetric limit, $\delta m \equiv m_u - m_d = 0$ \Rightarrow compute isospin-breaking (IB) corrections

Since $\alpha \sim \frac{m_u - m_d}{\Lambda_{QCD}} \sim 1\%$, treat IB effects perturbatively in path integral expansion [5] :

$$\langle O \rangle = \langle O \rangle_0 + \frac{1}{2!} e^2 \frac{\partial}{\partial e^2} \langle O \rangle \Big|_{e=0} + \sum_{f \in \{u,d,s\}} \Delta m_f \frac{\partial}{\partial m_f} \langle O \rangle \Big|_{e=0} + \mathcal{O} \left(\alpha^2, \left(m_f - m_f^{sim} \right)^2 \right)$$

Extra step in QCD+QED simulations: remove spatial zero modes of the photon - QED_L [6]

Electro-quenched approximation: sea quarks are electrically-neutral

[5] G.M. de Divitiis, et al. Leading isospin breaking effects on the lattice. Phys. Rev. D, 87(11):114505, 2013

[6] Masashi Hayakawa and Shunpei Uno. QED in finite volume and finite size scaling effect on electromagnetic properties of hadrons. Prog. Theor. Phys., 120:413-441, 2008

LATTICE QCD+QED

Ideally...

 $L^{-1} \ll E \ll a^{-1}$

 \Rightarrow Small lattice spacing + large box volume = Big computers

The simulation utilises a C++ mathematical object library known as **Grid** [2,3] and a Grid-based workflow management library called **Hadrons** [4].

It is performed on a 1468-node HPC system called **Tesseract**, provided by the DiRAC Extreme Scaling services.

Figure 3: The Tesseract at the DiRAC facility. Image from https://www.epcc.ed.ac.uk/facilities/dirac

STRATEGY

New challenge: Compute δR at (near) physical point simulation!

Pioneering work done by RM123 collaboration.

PoS, CD15:023, June-July 2016 Phys. Rev. D, <u>95:034504</u>, Feb 2017 Phys. Rev. D, <u>100:034514</u>, Aug 2019

$$\Gamma(\pi^{-} \to \mu^{-} \bar{v}_{\mu}[\gamma]) \equiv \Gamma = \Gamma_{0} + \Gamma_{1}$$

$$= \lim_{L \to \infty} \left(\Gamma_{0}(L) - \Gamma_{0}^{\text{pt}}(L) \right) + \lim_{m_{\gamma} \to 0} \Gamma_{1}^{\text{pt}}(m_{\gamma}, \Delta E_{\gamma})$$
Final state photon
Evaluated on the lattice
$$\Gamma(\pi^{-} \to \mu^{-} \bar{v}_{\mu}[\gamma]) = \Gamma_{0}^{\text{tree}} \left(1 + \frac{\delta \Gamma_{0}}{\Gamma_{0}^{\text{tree}}} - \frac{\delta \Gamma_{0}^{\text{pt}}}{\Gamma_{0}^{\text{tree}}} + \frac{\delta \Gamma_{1}^{\text{pt}}}{\Gamma_{0}^{\text{tree}}} \right)$$

$$\delta R_{\pi}$$

STRATEGY

• Four-fermion operator with neutrino leg amputated. Eg tree-level weak Hamiltonian

$$H_W = \left(\bar{\mu}\gamma_l \nu_\mu\right) (\overline{q_1}\gamma_L q_2) \to \widetilde{H}_{W,\alpha} = (\bar{\mu}\gamma_l)_\alpha (\overline{q_1}\gamma_L q_2)$$

 \Rightarrow match back to SM using W-regularisation [7].

Figure 4: At $E \ll M_{W^{\pm}}$, the effective weak Hamiltonian is a four-fermion operator with pinched interaction vertices.

• Sequential insertion of E.M vector and SIB scalar current

Figure 5: Building quark propagators with scalar (red square) and photon vector (green circle) current insertions sequentially.

[7] A. Sirlin. 'Large Mw, Mz behaviour of the o(a) corrections to semileptonic processes mediated by W'. Nuclear Physics B, 196(1):83 – 92, 1982

ISOSPIN-BREAKING DIAGRAMS

At $\mathcal{O}(\alpha, \delta m)$, this gives...

- 3 non-factorisable diagrams
- 5 factorisable diagrams

Figure 6: The six possible virtual QED correction at $\mathcal{O}(\alpha)$.

Figure 7: The two possible scalar insertion diagrams at $\mathcal{O}(\delta m)$.

PRESS ENTER AND DRUM ROLL...

$$\delta R_{\pi} = \frac{\alpha}{\pi} \log \left(\frac{M_Z^2}{M_W^2} \right) + 2 \frac{\delta \mathcal{A}_{\pi}}{\mathcal{A}_{\pi}} - 2 \frac{\delta M_{\pi}}{M_{\pi}} + \delta \Gamma_{\pi}^{\text{pt}}$$

$$\frac{|V_{us}|^2}{|V_{ud}|^2} = \frac{\Gamma(K^- \to \mu^- \overline{\nu}_{\mu}[\gamma])}{\Gamma(\pi^- \to \mu^- \overline{\nu}_{\mu}[\gamma])} \frac{M_{\pi^-}^3}{M_{\pi^-}^3} \frac{(M_{\pi^-}^2 - m_{\mu^-}^2)^2}{(M_{K^-}^2 - m_{\mu^-}^2)^2} \int \frac{(f_{\pi}/f_{K})^2}{1 + \delta R_{K} - \delta R_{\pi}}$$

$$\frac{|V_{us}|^2}{|V_{ud}|^2} = 0.23176(4)(28) (37)$$

$$FLAG/AY$$

$$f_{us} = 0.23176(4)(28) (37)$$

$$FLAG/AY$$

$$f_{us} = 0.23176(4)(28) (37)$$

Inset: The relevant diagrams that contribute to this data.

Figure 6(a+b)'s contribution to δB .

45

CONCLUSION & OUTLOOK

$$\frac{PRELIMINARY}{V_{us}} = 0.23176(4)(28) (37)$$

- Search for hints of BSM physics by testing unitarity of CKM
- First principle calculation of hadronic observables possible with Lattice QCD+QED
- Near-physical point lattice determination of $\frac{V_{us}}{V_{ud}}$ with <u>per-mille precision</u>!

Next....

- [Sleep for days]
- Renormalise H_W to obtain V_{us} and V_{ud} individually
- Semi-leptonic decays, $K^{\pm} \rightarrow \pi^0 l^{\pm} \nu_l ...$

THANK YOU FOR LISTENING

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme under grant agreement No 757646.

BUT WAIT THERE'S MORE?

SCALE SETTING & TUNING

- Simulation input bare quark mass \neq physical renormalized quark mass
- Correct for this mistuning by matching hadronic observables to their physical counterparts.

$$\begin{aligned} \mathsf{Eg.} \quad & M_{\pi}^{2} - = (aM_{\pi}^{0})^{2} + \alpha \, \frac{\partial (aM_{\pi}^{-})^{2}}{\partial \alpha} + \sum_{\substack{f \in u, d, s \\ f \in u, d, s}} \Delta m_{f} \, \frac{\partial (aM_{\pi})^{2}}{\partial m_{f}} \, + \mathcal{O}\left(\alpha^{2}, \delta m_{f}^{2}, \alpha \delta m_{f}\right) \\ & M_{K}^{2} - = (aM_{K}^{0})^{2} + \alpha \, \frac{\partial (aM_{K}^{-})^{2}}{\partial \alpha} + \sum_{\substack{f \in u, d, s \\ f \in u, d, s}} \Delta m_{f} \, \frac{\partial (aM_{K}^{-})^{2}}{\partial m_{f}} \, + \mathcal{O}\left(\alpha^{2}, \delta m_{f}^{2}, \alpha \delta m_{f}\right) \\ & M_{K}^{2} = (aM_{K}^{0})^{2} + \alpha \, \frac{\partial (aM_{K}^{0})^{2}}{\partial \alpha} + \sum_{\substack{f \in u, d, s \\ f \in u, d, s}} \Delta m_{f} \, \frac{\partial (aM_{K}^{0})^{2}}{\partial m_{f}} \, + \mathcal{O}\left(\alpha^{2}, \delta m_{f}^{2}, \alpha \delta m_{f}\right) \end{aligned}$$

$$a = \frac{(aM_{\Omega}^{-})^{2}}{M_{\Omega}^{-}}$$

DEFINING (ISOSYMMETRIC) QCD POINT

- Physically, no purely-QCD processes ⇒ prescription-dependent
- BMW mesonic scheme [8].
- RM123 advocates 'hadronic scheme'
- Intermediate results may be prescription-dependent, but $f_P\sqrt{1 + \delta R_P}$ is prescriptionindependent.

SEQUENTIAL INSERTION

Is old really gold?

Did a cost comparison between:

- 1. gauge-fixed wall source propagators with sequential insertion
- 2. \mathbb{Z}_2 point source All-to-All propagators

Figure 9: A signal (left) and cost (rght) comparison between two methods of current insertion for $\frac{\partial M_{K^-}}{\partial m_s}$.