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Microstates counting in AdS4
Recently, progress for (BPS and extremal)  black holes with horizon 

given by a Riemann surface , with magnetic flux through .
AdS4

Σ Σ

See e.g. Benini, Hristov, Zaffaroni 1511.04085 [hep-th] 
Zaffaroni 1902.07176 [hep-th] for a review 

…

Interpretation as branes wrapped on Σ

Holographic dual: 3d SCFT compactified on :  
1d SCQM where susy is preserved via topological twist 

Σ

Entropy reproduced in Field Theory by partition function/ 
Topologically twisted index: I-extremization
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Near the horizon: AdS2 × 𝕎ℂℙ1
[n−, n+]

Extremal
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…with a smooth uplift
They can be uplifted to completely smooth solutions of 11d supergravity!

AdS4 × SE7

AdS2 × Y9

UV

IR

Gauntlett, Kim, Waldram 0612253 [hep-th]
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Supersymmetry is not realized by a topological twist

Entropy of the extremal and supersymmetric black hole: 

SBH =
π

G(4)

J
Qe

=
π

4 G(4) ( χ2 + 16 ( Q2
e + Q2

m ) − χ)

In the 1d SQM, the R-symmetry of the 3d SCFT mixes with 
the U(1) isometry of the spindle (even without rotation!):

R1d = R3d + 2 2
n+ n− 8 n2

− n2
+ Q2

e + n2
− + n2

+

16 n2
− n2

+ Q2
e + n2

− + n2
+

∂φ

For D3-branes on a spindle: we reproduce entropy and 
mixing with a Field Theory computation (anomaly polynomial)
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PD black holes: the 4d story and their regular uplift 

D3-branes on spindles:    in 5dAdS3 × 𝕎ℂℙ1
[n−, n+]

Near-horizon limit: entropy, spinors and R-symmetry
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Conical deficits
We take . Near the poles  we find:0 < θ < π θ− = 0 , θ+ = π ,

ds2
θ,ϕ ≈ [ Σ

PΩ2 ]
θ=θ±

[dθ2 + P2
± (θ − θ±)2 dϕ2]

Due to the acceleration,  we cannot make it regular! We have 
conical deficits at the two poles (with different deficit at each pole).

P− ≠ P+

Here . Locally , but globally?P± = P(θ±) ℝ2
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No: uplift to 11d  
and regularize!
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G =
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4d metric Sasaki-Einstein manifold 
(regular class)

Kahler-Einstein manifold 
(positive curvature)

Kahler form of KE64d field strength: 
F = dA

Fibration term: 
η = 1

4 dψ + σ , dσ = 2J

This solves the eom of 11d supergravity and preserves SUSY
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 1.    “Quantize” the conical deficits, making the space in the  directions 
        into a spindle  

θ, ϕ
𝕎ℂℙ1

[n−, n+]

P+

P−
=

n−

n+
⇒ Δϕ =

2π
n+ P+

=
2π

n− P−

2.    Make the space in the  directions into a Lens space  , seen 
       as a Hopf-like fibration over . This requires

θ, ϕ, ψ S3/ℤ𝚚
𝕎ℂℙ1

[n−, n+]

m =
g
α

3.    At fixed  the space ( ) now looks like a completely smooth Lens space  
       fibration over the  !

t, r Y9
KE6

S3 / ℤ𝚚 ↪ Y9 → KE6

4.    The flux  and its dual  are properly quantizedG *11 G

Compatible with susy
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y2 + 𝚓2

q(y)
dy2 +

q(y)
4 (y2 + 𝚓2)

(dz + 𝚓 ρ dτ)2

A = h(y)(dz + 𝚓 ρ dτ)

AdS2

(Spinning) spindle 
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In the supersymmetric and extremal case, we have
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− + n2
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− n2

+ Q2
e − (n− + n+)

4 n− n+

angular momentum 
electric charge

J =
Qe =

True for AdS black holes in 
various dimensions!

Can we reproduce it from the Field Theory? 
Done for central charge in  solutions!AdS3 × 𝕎ℂℙ1

[n−, n+]
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μ + Aμ ∼ ∂μ

To check if this is the case, compare
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1
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n− − n+
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Magnetic flux

They are not proportional: no topological twist!

How is supersymmetry realized in the dual Field Theory?
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The R-symmetry
The UV geometry is  , with metricAdS4 × SE7

ds2
11 =

1
4

ds2(AdS4) + ds2(SE7) =
1
4

ds2(AdS4) + ( 1
4 dψ + σ +

1
2

A)
2

+ ds2(KE6)

So the R-symmetry of the 3d SCFT is the Reeb vector

R3d =
∂

∂ψ
From the spinor bilinears and the  superconformal algebra:𝒩 = (0,2)

R1d = R3d + 2 1 − 𝚓2 ∂z

First example of mixing between higher and lower 
dimensional R-symmetry (with no rotation)!
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Completely regular  
solutions of type IIB supergravity

AdS3 × Y7

Uplift to 10d Regularization of  
conical deficits

Gauntlett, Kim, Waldram 0612253 [hep-th]
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…and differences

Lack the full geometry: we conjecture the  solutions 
to arise as near-horizon geometry of a 5d black string

AdS3

No rotation: no continuous parameters

Entropy/central charge and R-symmetry mixing reproduced 
with a Field Theory computation

Confirms our AdS/CFT interpretation!





Thank you  
for the attention!


