Multi-Winding Magnetic Flux Tubes in Colour-Superconducting Quark Matter (Based on this work¹)

Geraint Evans

University of Southampton

December 2020

Schematic QCD Phase Diagram

Project Motivation

- ▶ Focus on the high μ , low T regime of the diagram
- ► Study dense, colour superconducting quark matter in the presence of an external magnetic field
- Previous project analysed colour-magnetic defects and constructed phase diagrams using a Ginzburg-Landau approach with massless quarks²
- ► Introduce a correction term that accounts for the strange quark mass for a more realistic approximation

Superconductivity: Refresher

Type-II when $\kappa = \lambda/\xi > 1/\sqrt{2}$ (blue dashed line) and superconductor admits magnetic flux through defects

Colour Superconductivity

- Meissner Effect: Expulsion of colour-magnetic fields
- More than one way of forming Cooper Pairs e.g.
 Colour-Flavour Locking (CFL) and Two-Flavour Pairing (2SC)
- ► CFL: Cooper pairs are rd gu, bu rs, bd gs and same pairing with the colours/flavours switched (ru gd etc.)
- ▶ 2SC: Only two flavours and two colours participate in pairing for example: u,d with r,g charge pair (all b and s quarks unpaired)
- Can be both electromagnetic and colour superconductors simultaneously

Ginzburg-Landau Potential

Three condensates and three gauge fields (pre-rotation) with additional correction terms introduced,

$$U = \left| \left(\nabla + i\tilde{q}_{3}\tilde{A}_{3} + i\tilde{q}_{81}\tilde{A}_{8} \right) \phi_{1} \right|^{2} + \left| \left(\nabla - i\tilde{q}_{3}\tilde{A}_{3} + i\tilde{q}_{82}\tilde{A}_{8} \right) \phi_{2} \right|^{2}$$

$$+ \left| \left(\nabla - i\tilde{q}_{83}\tilde{A}_{8} \right) \phi_{3} \right|^{2} - (\mu^{2} - m_{1}^{2}) |\phi_{1}|^{2} - (\mu^{2} - m_{2}^{2}) |\phi_{2}|^{2}$$

$$- (\mu^{2} - m_{3}^{2}) |\phi_{3}|^{2} + \lambda (|\phi_{1}|^{4} + |\phi_{2}|^{4} + |\phi_{3}|^{4})$$

$$- 2h(|\phi_{1}|^{2} |\phi_{2}|^{2} + |\phi_{1}|^{2} |\phi_{3}|^{2} + |\phi_{2}|^{2} |\phi_{3}|^{2}) + \frac{\tilde{B}_{3}^{2}}{2} + \frac{\tilde{B}_{8}^{2}}{2} + \frac{\tilde{B}^{2}}{2},$$

$$m_1^2 \propto \frac{m_s^2}{2\mu_a} - \frac{2\mu_e}{3}, \quad m_2^2 \propto \frac{m_s^2}{2\mu_a} + \frac{\mu_e}{3}, \quad m_3^2 \propto \frac{\mu_e}{3}.$$

Mass correction³, coupled rotated field(s) and uncoupled rotated field contributions.

³K.lida et al., PRL 93, 132002, 2004

Equations of Motion

Using an over-relaxation method we solve the equations;

$$\begin{split} \tilde{a}_{3}'' - \frac{\tilde{a}_{3}'}{R} &= \frac{\tilde{q}_{3}}{\lambda} \left[\left(\mathcal{N}_{1}(\tilde{a}_{3}, \tilde{a}_{8}) + \Xi R^{2} \right) f_{1}^{2} - \left(\mathcal{N}_{2}(\tilde{a}_{3}, \tilde{a}_{8}) - \Xi R^{2} \right) f_{2}^{2} \right], \\ \tilde{a}_{8}'' - \frac{\tilde{a}_{8}'}{R} &= \frac{1}{\lambda} \left[\tilde{q}_{81} \left(\mathcal{N}_{1}(\tilde{a}_{3}, \tilde{a}_{8}) + \Xi R^{2} \right) f_{1}^{2} + \tilde{q}_{82} \left(\mathcal{N}_{2}(\tilde{a}_{3}, \tilde{a}_{8}) - \Xi R^{2} \right) f_{2}^{2} \right. \\ &\left. + \tilde{q}_{83} \mathcal{N}_{3}(\tilde{a}_{8}) f_{3}^{2} \right], \\ f_{1}'' + \frac{f_{1}'}{R} + f_{1} \left[1 - \frac{\alpha}{4} - f_{1}^{2} + \eta \left(f_{2}^{2} + f_{3}^{2} \right) - \left(\frac{\mathcal{N}_{1}(\tilde{a}_{3}, \tilde{a}_{8}) + \Xi R^{2}}{R} \right)^{2} \right] \simeq 0, \\ f_{2}'' + \frac{f_{2}'}{R} + f_{2} \left[1 - \frac{\alpha}{2} - f_{2}^{2} + \eta \left(f_{3}^{2} + f_{1}^{2} \right) - \left(\frac{\mathcal{N}_{2}(\tilde{a}_{3}, \tilde{a}_{8}) - \Xi R^{2}}{R} \right)^{2} \right] \simeq 0, \\ f_{3}'' + \frac{f_{3}'}{R} + f_{3} \left[1 - f_{3}^{2} + \eta \left(f_{1}^{2} + f_{2}^{2} \right) - \left(\frac{\mathcal{N}_{3}(\tilde{a}_{8})}{R} \right)^{2} \right] = 0, \end{split}$$

for re-scaled, dimensionless condensates $f_i(R)$ and gauge fields, $\tilde{a}_j(R)$ where R is re-scaled, dimensionless radial coordinate.

Massless vs Massive Case

- ▶ Preferred configuration has winding number $n \to \infty$ and $R \to \infty$ such that flux tubes become domain walls in massless case
- Within $2SC_{ud}(f_3)$ flux tube cores $2SC_{us}(f_2)$ condensate takes non-zero value

Flux Tube Profiles

 Combination of two condensates (red line) has two minima at high winding (low mass)

Figure: R = 10 corresponds to $r \simeq 7.7$ fm

Domain Wall Remnants

► At high winding (low mass) magnetic field becomes ring-like in X-Y plane

$H - T_c/\mu_q$ Phase Diagram

▶ Preferred *n* depends on T_c/μ_q for given m_s

Figure: $H/(\mu^2/\lambda^{1/2}) \simeq 14$ corresponds to $H \sim 10^{19} {\rm G}$ at $T_c/\mu_q = 0.05$

$m_s/\mu_q - T_c/\mu_q$ Phase Diagram

Dense region of high n preferred configurations at very low masses

Summary and Outlook

Summary

- Constructed phase diagrams for colour-superconducting quark matter in an external magnetic field H
- ► In the presence of a strange quark mass multi-winding flux tubes are preferred over domain walls

Outlook

- Flux tubes effect on Neutron Star ellipticity and amplitude of Gravitational Waves?⁴
- Similarities to magnetic ring-like structures in other models?^{5,6}
- Improve temperature treatment
- Explore the mass effect on CFL phase

⁶D.Bazeia, M.A. Marques and D. Melnikov, Phys. Lett. B 785 2018

⁴K. Glampedakis, D.I. Jones, L. Samuelsson, PRL 109, 081103, 2012

⁵M.N. Chernodub and A.S. Nedelin, Phys. Rev. D 81, 125022, 2010