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Machine learning models can be powerful
performance-boosting tools




The Story

1. Setting The Scene
Dark Matter

Direct Detection
2. The Parameter Space is Big and Expensive
3. Surrogate Models can Dramatically Boost Performance

4. Machine Learning Models can be Effective Surrogates



Setting The Scene
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DM Scattering in a Direct Detector

X X

N N

x = A BSM particle with o ~ weak interaction

N=p, n



DM Scattering in a Direct Detector
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DM Scattering in a Direct Detector
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DM Scattering in a Direct Detector
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Given the data from all bins, what are the DM parameters;
how massive is it and how much of a punch does it pack?




The Direct Detection Parameter
Space is Big and Expensive




The Count Calculation
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L£(6) = HPoisson(kth Bin Data; N)
k

The Hint of a Problem
e Want to maximise £ to get the best-fit point o.
e Means evaluating it many thousands of times.

o However, Ny is looking pretty expensive!
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Dark Matter: The EFT
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Interf.

Generally, can have 11 O’s!
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Dark Matter: The Halo

f(v) = Choice of DM Halo function

Have nuissance parameters too:
e Dark matter density
e Mean velocity in halo

Escape velocity of MW

And possibly more...!
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Direct Detection in Full

So, to recap:
e Given a dark matter signal, want to find best-fit point (:3
e Means traversing parameter space, calculating...
e ... a three-nested integral (possibly for different targets)

—

Generally, © = (my, c1, ..., ci1)

Marginalising over all astrophysics

The direct detection parameter space is big and
expensive to traverse!
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Surrogate Models can Dramatically
Boost Performance




Surrogate Models: What are They?

Simple Idea
Replace expensive function with cheap function which mimics the
costly function:

Ni(8) — £(©) ~ Ni(6)
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Surrogate Models: How to Build a Mimic

1. Pick a surrogate model, fy.
Pick some ©'s in the parameter space.
For each © and bin, k, calculate the true count, Ny(6).

‘Train’ f, on this dataset.

A o

Use fx to make all future predictions quickly!
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RAPIDD: Polynomial Surrogates

Simple and effective: Polynomials (RAPIDD?)

Neoefr

(é E den

di,n = coefficients

© = parameter combinations to make desired polynomial
order

Training means finding those d, , which best fit N,.

!Cerdefio et al., “Surrogate models for direct dark matter detection”.
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RAPIDD: 2D Example
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Stars are best fit points for full physics code (40 mins). Circles are best
fit points for RAPIDD (10 s). Contours: 1o and 20 confidence regions.
See [1].
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RAPIDD: 3D Example (Isospin violation)

1.0 1:5 2:0 215
log g (my /[GeV])

Interference terms not as well modelled by polynomials, but still pretty

good and definitely faster. See [1]. 18



(Polynomial) surrogate models can dramatically boost
performance while still remaining very accurate

A couple of polynomial downfalls (See [1]):
o Need special treatment to deal with interference terms.
e Don't handle discontinuities well (sudden changes to counts).

e Precision loss at very high dimensionalities.

What other surrogate models, fi, can we pick?
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Machine Learning Models can be
Effective Surrogates




What is a Machine Learning Model?

My Quick Definition
An algorithmic model which attempts to learn from data to

minimise how bad it is at predicting future values.

Given a set of ‘features’, ©, learn the mapping fx which gives the
target values Ny by minimising some loss function (eg MSE).
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A Proof of Concept

Compare: f; =polynomials with f, = DNNs
Total number of data points (©, true N): 1900
Train on 90% of data

Test on remaining 10%
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Binned Count
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Binned Count
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R2-Score
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Evaluation times for 10000 points:
Polynomials ~ 10 s DNN ~ 25 s

DNN and Polynomial times comparable, and DNNs looking more
accurate

So now...

What do the reconstructed best-fit points and confidence-regions
look like?
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The Take-Home Messages

1. Invariably, we meet big, expensive functions.

2. Surrogate models can dramatically boost performance at

evaluation time.

3. Machine learning models can be very effective surrogates!

Machine learning models can be powerful
performance-boosting tools
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