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Machine learning models can be powerful

performance-boosting tools
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The Story

1. Setting The Scene

Dark Matter

Direct Detection

2. The Parameter Space is Big and Expensive

3. Surrogate Models can Dramatically Boost Performance

4. Machine Learning Models can be Effective Surrogates
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Setting The Scene
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WIMPs!

Credit: xkcd

+ Me
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WIMPs!

Credit: xkcd + Me
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DM Scattering in a Direct Detector
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χ = A BSM particle with σ ∼ weak interaction

N = p, n
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DM Scattering in a Direct Detector

Credit: SuperCDMS Collaboration

+ Wikipedia
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DM Scattering in a Direct Detector

Credit: SuperCDMS Collaboration + Wikipedia
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DM Scattering in a Direct Detector
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Given the data from all bins, what are the DM parameters;

how massive is it and how much of a punch does it pack?

9



The Direct Detection Parameter

Space is Big and Expensive



The Count Calculation
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Important Physics

Astro + Particle

L(~Θ) =
∏
k

Poisson(kth Bin Data; Nk)

The Hint of a Problem

� Want to maximise L to get the best-fit point ~̂Θ.

� Means evaluating it many thousands of times.

� However, Nk is looking pretty expensive!
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Dark Matter: The EFT
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Generally, can have 11 O’s!

Lint

N

χ

N

χ

11



Dark Matter: The Halo

f (~v) = Choice of DM Halo function

Have nuissance parameters too:

� Dark matter density

� Mean velocity in halo

� Escape velocity of MW

� And possibly more...!
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Direct Detection in Full

So, to recap:

� Given a dark matter signal, want to find best-fit point ~̂Θ

� Means traversing parameter space, calculating...

� ... a three-nested integral (possibly for different targets)

� Generally, ~Θ = (mχ, c1, . . . , c11)

� Marginalising over all astrophysics

The direct detection parameter space is big and

expensive to traverse!
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Surrogate Models can Dramatically

Boost Performance



Surrogate Models: What are They?

Simple Idea

Replace expensive function with cheap function which mimics the

costly function:

Nk(~Θ)→ fk(~Θ) ' Nk(~Θ)
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Surrogate Models: How to Build a Mimic

1. Pick a surrogate model, fk .

2. Pick some ~Θ’s in the parameter space.

3. For each ~Θ and bin, k , calculate the true count, Nk(~Θ).

4. ‘Train’ fk on this dataset.

5. Use fk to make all future predictions quickly!
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RAPIDD: Polynomial Surrogates

Simple and effective: Polynomials (RAPIDD1)

fk(~Θ) ≡ Pk(~Θ) ≡
Ncoeff∑
n=1

dk,nΘ̃n

dk,n = coefficients

Θ̃ = parameter combinations to make desired polynomial

order

Training means finding those dk,n which best fit Nk .

1Cerdeño et al., “Surrogate models for direct dark matter detection”.
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RAPIDD: 2D Example

Stars are best fit points for full physics code (40 mins). Circles are best

fit points for RAPIDD (10 s). Contours: 1σ and 2σ confidence regions.

See [1].
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RAPIDD: 3D Example (Isospin violation)

Interference terms not as well modelled by polynomials, but still pretty

good and definitely faster. See [1].
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(Polynomial) surrogate models can dramatically boost

performance while still remaining very accurate

A couple of polynomial downfalls (See [1]):

� Need special treatment to deal with interference terms.

� Don’t handle discontinuities well (sudden changes to counts).

� Precision loss at very high dimensionalities.

What other surrogate models, fk , can we pick?
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Machine Learning Models can be

Effective Surrogates



What is a Machine Learning Model?

My Quick Definition

An algorithmic model which attempts to learn from data to

minimise how bad it is at predicting future values.

Given a set of ‘features’, ~Θ, learn the mapping fk which gives the

target values Nk by minimising some loss function (eg MSE).
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A Proof of Concept

Compare: fk =polynomials with fk = DNNs

Total number of data points (~Θ, true Nk): 1900

Train on 90% of data

Test on remaining 10%
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Evaluation times for 10000 points:

Polynomials ∼ 10 s DNN ∼ 25 s

DNN and Polynomial times comparable, and DNNs looking more

accurate

So now...

What do the reconstructed best-fit points and confidence-regions

look like?
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The Take-Home Messages

1. Invariably, we meet big, expensive functions.

2. Surrogate models can dramatically boost performance at

evaluation time.

3. Machine learning models can be very effective surrogates!

Machine learning models can be powerful

performance-boosting tools
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