Machine Learning Surrogates for Rapid Dark Matter Direct Detection Calculations

Dorian Amaral¹ D. G. Cerdeño² A. Cheek³ H. Schulz¹ *YTF20 December 16, 2020*

¹Durham University ²Universidad Autónoma de Madrid ³Université catholique de Louvain

Machine learning models can be powerful performance-boosting tools

- 1. Setting The Scene
 - Dark Matter
 - Direct Detection
- 2. The Parameter Space is Big and Expensive
- 3. Surrogate Models can Dramatically Boost Performance
- 4. Machine Learning Models can be Effective Surrogates

Setting The Scene

Credit: xkcd

Credit: xkcd + Me

 $\chi={\sf A}$ BSM particle with $\sigma\sim$ weak interaction

N = p, n

Credit: SuperCDMS Collaboration + Wikipedia

 $\$ Parameter space point $ec{\Theta} = (m_{\chi}, \, ec{c})$

Given the data from all bins, what are the DM parameters; how massive is it and how much of a punch does it pack?

The Direct Detection Parameter Space is Big and Expensive

The Count Calculation

$$N_{k}(\vec{\Theta}) \propto \underbrace{\int_{E_{k}}^{E_{k+1}} dE_{R} \varepsilon(E_{R})}_{E_{k}} \underbrace{\int_{E_{R}'}^{E_{k+1}} dE_{R} \varepsilon(E_{R})}_{E_{R}'} \underbrace{\int_{E_{R}'}^{dE_{R}'} Gauss(E_{R}', E_{R})}_{C_{min}} \underbrace{\int_{v_{min}}^{Important Physics} Astro + Particle}_{\int_{v_{min}} d^{3}\vec{v} \, v \, f(\vec{v}) \, \frac{d\sigma_{\chi T}}{dE_{R}'}}$$

$$\mathcal{L}(ec{\Theta}) = \prod_k \mathrm{Poisson}(k^{\mathsf{th}} \; \mathsf{Bin} \; \mathsf{Data}; N_k)$$

The Hint of a Problem

- Want to maximise $\mathcal L$ to get the best-fit point $\hat{\vec{\Theta}}$.
- Means evaluating it many thousands of times.
- However, N_k is looking pretty expensive!

Dark Matter: The EFT

Generally, can have 11 \mathcal{O} 's!

 $f(\vec{v}) =$ **Choice** of DM Halo function

Have nuissance parameters too:

- Dark matter density
- Mean velocity in halo
- Escape velocity of MW
- And possibly more...!

So, to recap:

- Given a dark matter signal, want to find best-fit point $\vec{\Theta}$
- Means traversing parameter space, calculating...
- ... a three-nested integral (possibly for different targets)
- Generally, $ec{\Theta} = (\mathit{m}_{\chi}, \mathit{c}_{1}, \ldots, \mathit{c}_{11})$
- Marginalising over all astrophysics

The direct detection parameter space is big and expensive to traverse!

Surrogate Models can Dramatically Boost Performance

Simple Idea

Replace expensive function with cheap function which mimics the costly function:

$$N_k(ec{\Theta}) o f_k(ec{\Theta}) \simeq N_k(ec{\Theta})$$

- 1. Pick a surrogate model, f_k .
- 2. Pick some $\vec{\Theta}$'s in the parameter space.
- 3. For each $\vec{\Theta}$ and bin, k, calculate the true count, $N_k(\vec{\Theta})$.
- 4. *'Train'* f_k on this dataset.
- 5. Use f_k to make all future predictions quickly!

Simple and effective: Polynomials (RAPIDD¹)

$$f_k(\vec{\Theta}) \equiv \mathcal{P}_k(\vec{\Theta}) \equiv \sum_{n=1}^{N_{\text{coeff}}} d_{k,n} \tilde{\Theta}_n$$

 $d_{k,n} = \text{coefficients}$

 $\tilde{\Theta}=$ parameter combinations to make desired polynomial order

Training means finding those $d_{k,n}$ which best fit N_k .

¹Cerdeño et al., "Surrogate models for direct dark matter detection".

RAPIDD: 2D Example

Stars are best fit points for full physics code (**40 mins**). Circles are best fit points for RAPIDD (**10 s**). Contours: 1σ and 2σ confidence regions. See [1].

RAPIDD: 3D Example (Isospin violation)

Interference terms not as well modelled by polynomials, but still pretty good and definitely faster. See [1].

(Polynomial) surrogate models can dramatically boost performance while still remaining very accurate

A couple of polynomial downfalls (See [1]):

- Need special treatment to deal with interference terms.
- Don't handle discontinuities well (sudden changes to counts).
- Precision loss at very high dimensionalities.

What other surrogate models, f_k , can we pick?

Machine Learning Models can be Effective Surrogates

My Quick Definition

An algorithmic model which attempts to learn from data to minimise how bad it is at predicting future values.

Given a set of 'features', $\vec{\Theta}$, learn the mapping f_k which gives the target values N_k by minimising some loss function (eg MSE).

300 neurons \times 4 hidden layers

Compare: f_k =polynomials with f_k = DNNs Total number of data points ($\vec{\Theta}$, true N_k): 1900 Train on 90% of data Test on remaining 10%

True DNN Poly (order 10)

True DNN Poly (order 10)

 R^2 -score = Fraction of data explained by model within 1σ

Evaluation times for 10000 points: Polynomials \sim 10 s DNN \sim 25 s

DNN and Polynomial times comparable, and DNNs looking more accurate

So now...

What do the reconstructed best-fit points and confidence-regions look like?

- 1. Invariably, we meet big, expensive functions.
- 2. Surrogate models can dramatically boost performance at evaluation time.
- 3. Machine learning models can be very effective surrogates!

Machine learning models can be powerful performance-boosting tools