Colour/ Kinematics Duality in AdS_{4}

Connor Armstrong with Dr Arthur Lipstein and Jiajie Mei based on [2012.02059]

December 15, 2020

Outline

- Motivation
- Colour/ Kinematics Recap
- AdS Setup \& Spinor Helicity
- AdS colour/ kinematics \& amplitudes
- Links to conformal field theory

Motivation

- Aim is to extend flat space relations to curved spacetime, linking gauge and gravity amplitudes
- How much of usual amplitudes 'machinery' works in more general spacetimes?
- Construction of CFT correlation functions
- Links to inflationary cosmology

Colour/ Kinematics Duality

- 4pt amplitude, three numerator structures

Review in 1909.01358

- 4pt colour-dressed YM amplitude:

$$
\mathcal{A}_{4}=\frac{n_{s} c_{s}}{s}+\frac{n_{t} c_{t}}{t}+\frac{n_{u} c_{u}}{u}
$$

- If $n_{s}+n_{t}+n_{u}=0$, then $\mathcal{M}_{4}=\frac{n_{s}^{2}}{s}+\frac{n_{t}^{2}}{t}+\frac{n_{u}^{2}}{u}$
- Can also find relations between colour-ordered expressions

$$
u A_{1324}=s A_{1234}, \text { where } A_{1234}=\frac{n_{s}}{s}-\frac{n_{t}}{t}
$$

AdS Amplitudes

- We work on the timelike boundary of AdS_{4}
- Using Witten diagrams, we construct "AdS amplitudes" $\langle j j j j\rangle$
eg 1011.0780, 1810.12459
- These encode correlators of the boundary CFT

AdS Spinor Helicity

- Construct 4d null momentum
(analagous to dS case in 1104.2846, 1812.11129, 2005.04234)

$$
k^{\mu}=\left(k^{0}, k^{1}, k^{2}, i k\right)
$$

- Momentum in the radial direction is not conserved,

$$
E=\sum_{i=1}^{4} k_{i}
$$

- Flat space limit recovers usual 4d amplitudes

$$
\lim _{E \rightarrow 0}\langle j j j j\rangle=\frac{A_{4}}{E}
$$

AdS Spinor Helicity

- From null momenta, can make usual spinors

$$
k^{\alpha \dot{\alpha}}=k^{\mu}\left(\sigma_{\mu}\right)^{\alpha \dot{\alpha}}=\lambda^{\alpha} \tilde{\lambda}^{\dot{\alpha}}
$$

- No longer have full Lorentz symmetry: we can convert spinor indices and extract radial components

$$
\begin{aligned}
\bar{\lambda}_{i}^{\alpha} & =-\epsilon^{\alpha \beta}\left(\sigma^{3}\right)_{\beta \dot{\beta}} \tilde{\lambda}_{i}^{\dot{\beta}} \\
\epsilon_{\alpha \beta} \lambda^{\alpha} \bar{\lambda}^{\beta} & =\langle m \bar{m}\rangle=-2 i k_{m}
\end{aligned}
$$

- Large variety of spinor identies but momentum conservation is weaker than in flat space.

Extension to AdS Space

- From Witten diagrams, we find $n_{s}+n_{t}+n_{u}=Q$

Similar to massive case in 2004.12948

- We are free to shift numerators with generalised gauge transformation

$$
\begin{aligned}
\tilde{n}_{s} & =n_{s}+s \Delta \\
A_{1234} & =\frac{n_{s}}{s}-\frac{n_{t}}{t}=\frac{\tilde{n}_{s}}{s}-\frac{\tilde{n}_{t}}{t}
\end{aligned}
$$

- Then BCJ becomes

$$
u\left\langle j_{1} j_{3} j_{2} j_{4}\right\rangle=s\left\langle j_{1} j_{2} j_{3} j_{4}\right\rangle+\xi \frac{\tilde{n}_{t}}{t}
$$

Explicit Numerators

- Unlike flat space, all-plus gluon amplitude is non-vanishing

$$
\begin{aligned}
n_{s}^{++++}= & \frac{1}{8 k_{1} k_{2} k_{3} k_{4}}\langle\overline{1} \overline{2}\rangle\langle\overline{3} \overline{4}\rangle[i(\langle 1 \overline{2}\rangle\langle\overline{4} \overline{1}\rangle\langle\overline{1} \overline{3}\rangle+\langle 2 \overline{1}\rangle\langle\overline{3} \overline{2}\rangle\langle\overline{2} \overline{4}\rangle) \\
& -k_{\underline{12}}(\langle\overline{2} \overline{3}\rangle\langle\overline{4} \overline{1}\rangle-\langle\overline{1} \overline{3}\rangle\langle\overline{2} \overline{4}\rangle) \\
& \left.-\frac{1}{k_{\underline{12}}}\langle\overline{1} \overline{2}\rangle\langle\overline{3} \overline{4}\rangle\left(k_{1}-k_{2}\right)\left(k_{3}-k_{4}\right)\right] .
\end{aligned}
$$

- From here, can write down full $\mathrm{N}^{-2} \mathrm{MHV}$ amplitude and find new numerators \tilde{n}_{i} using permutations

Relation to CFT Correlators

- Witten diagrams calculate the transverse part of the CFT spin-1 correlator

$$
\langle J J J J\rangle=\langle j j j j\rangle+f_{1}\left(k_{i}\right)\langle j j j\rangle+f_{2}\left(k_{i}\right)\langle j j\rangle
$$

- Longitudinal pieces do not have $1 / E$ pole and so vanish in flat space, but are still important here
- We can reconstruct the full correlator using Ward identities by adding lower order contact terms As in 1304.7760

Next Steps?

- We can construct

$$
\left\langle t_{1} t_{2} t_{3} t_{4}\right\rangle=\frac{k_{1} k_{2} k_{3} k_{4}}{E}\left(\frac{\tilde{n}_{s}^{2}}{s}+\frac{\tilde{n}_{t}^{2}}{t}+\frac{\tilde{n}_{u}^{2}}{u}\right)
$$

- Need to calculate gravitational versions to compare to those obtained from double copy (We might get subleading correction terms)
- Transform to dS space and link to cosmological correlators
- Scattering equation/ worldsheet links

