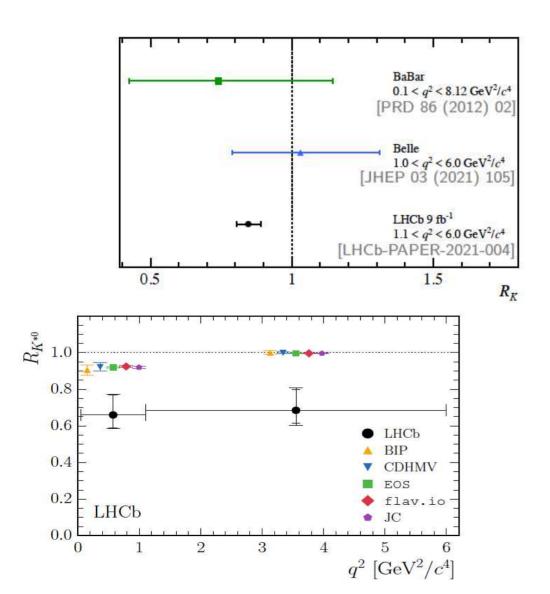
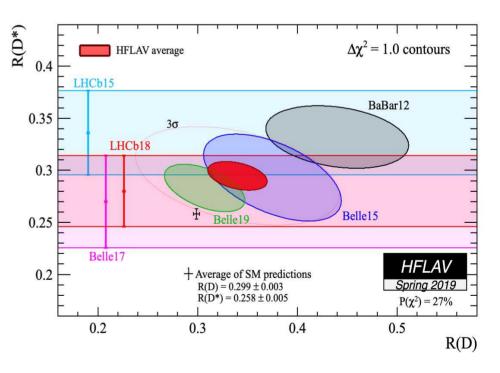
B-physics anomalies: *facts*, *hopes*, *dreams*, & *worries*


Gino Isidori


[*University of Zürich*]

Facts [a closer look to the data]

Since 2013 results in semi-leptonic B decays started to exhibit tensions with the SM predictions connected to a possible violation of Lepton Flavor Universality

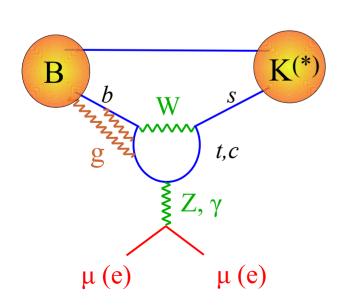
More precisely, we seem to observe a <u>different behavior</u> (beside pure kinematical effects) of different lepton species in the following processes:

```
• b \rightarrow s l^+l^- (neutral currents): \mu vs. e
```

Since 2013 results in semi-leptonic B decays started to exhibit tensions with the SM predictions connected to a possible violation of Lepton Flavor Universality

More precisely, we seem to observe a <u>different behavior</u> (beside pure kinematical effects) of different lepton species in the following processes:

```
• b \rightarrow s l^+l^- (neutral currents): \mu vs. e NEW!
```


• b \rightarrow c lv (charged currents): τ vs. light leptons (μ , e)

3.1 σ from single "clean" observable [R_K]

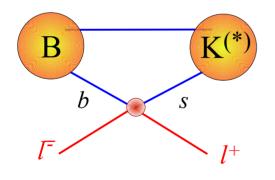
• b \rightarrow s l^+l^- (neutral currents)

List of the observables:

- → P'_5 anomaly [B \rightarrow K* $\mu\mu$ angular distribution]
- ► Smallness of all $B \to H_s \mu \mu$ rates $[H_s = K, K^*, \phi \text{ (from } B_s)]$
- LFU ratios (μ vs. e) in B \rightarrow K* $\ell\ell$ & B \rightarrow K $\ell\ell$
- → Smallness of BR($B_s \rightarrow \mu\mu$)

Some of these observables are affected by irreducible theory errors (*form factors* + *long-distance contributions*)

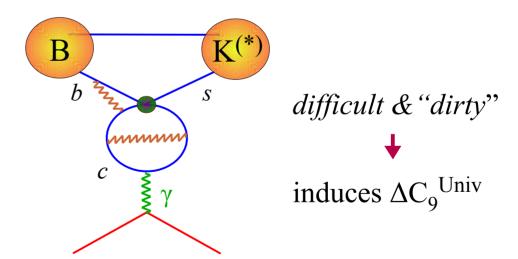
The new result strength the overall consistency of the picture: all data <u>coherently</u> point to well-defined non-SM contributions of <u>short-distance</u> origin.

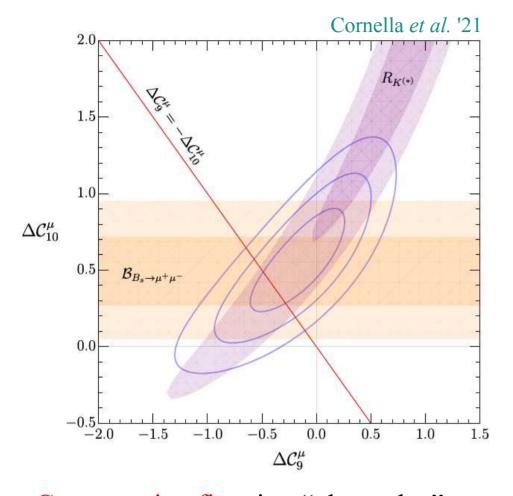

To describe $b \rightarrow sll$ decays we

- build an EFT Lagrangian
- evolve it down to $\mu \sim m_b$
- evaluate hadronic matrix elements

$$\mathcal{L}_{\text{eff}} = \frac{4G_F}{\sqrt{2}} V_{tb}^* V_{ts} \sum_{i} C_i \mathcal{O}_i$$

FCNC operators:


$$\mathcal{O}_{10}^{\ell} = (\bar{s}_L \gamma_{\mu} b_L) (\bar{\ell} \gamma^{\mu} \gamma_5 \ell)$$
$$\mathcal{O}_{9}^{\ell} = (\bar{s}_L \gamma_{\mu} b_L) (\bar{\ell} \gamma^{\mu} \ell)$$


easy & "clean"

Four-quark operators:

$$\mathcal{O}_2 = (\bar{s}_L \gamma_\mu b_L)(\bar{c}_L \gamma_\mu c_L)$$
:

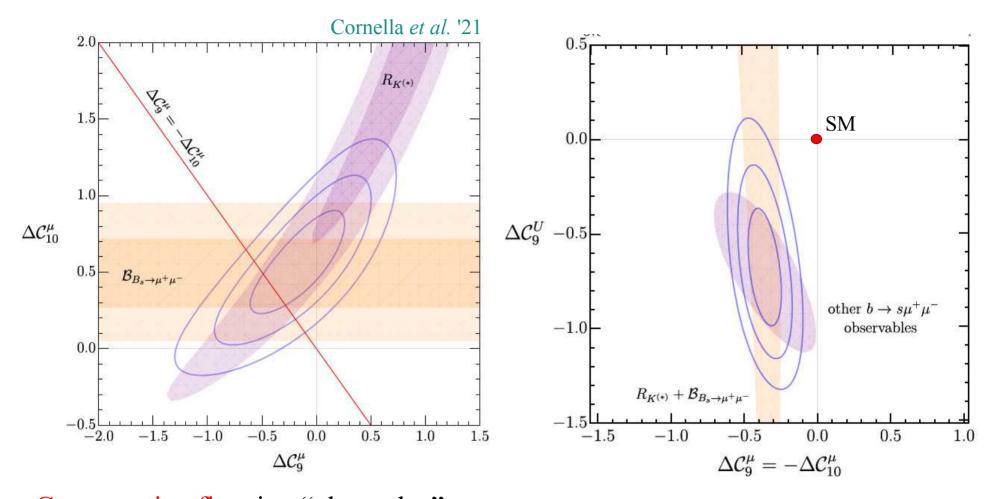
N.B.: long-distance effect cannot induce LFU breaking terms (\rightarrow LFU ratios "clean") and cannot induce axial-current contributions (\rightarrow B_s \rightarrow $\mu\mu$ "clean")

Conservative fit using "clean obs." only [$\Delta C_i^{\mu} = C_i^{\mu} - C_i^{e}$]:

significance of NP hypothesis $\Delta C_0^{\mu} = -\Delta C_{10}^{\mu}$ vs. SM

LFU ratios:

$$R_{H} = \frac{\int d\Gamma(B \to H \,\mu\mu)}{\int d\Gamma(B \to H \,ee)} \quad (H=K, K^{*})$$


$$LHCb '14 - '21$$

$$B_s \rightarrow \mu\mu$$
:

$$BR(B_s \to \mu\mu)_{SM} = (3.66 \pm 0.14) \times 10^{-9}$$

Beneke *et al.* '19

BR(
$$B_s \to \mu\mu$$
)_{exp} = (2.85±0.32) × 10⁻⁹
ATLAS+CMS+LHCb '21

<u>A closer look to the data</u>

 $> 5\sigma$

Conservative fit using "clean obs." only [$\Delta C_i^{\mu} = C_i^{\mu} - C_i^{e}$]:

4.6σ

significance of NP hypothesis $\Delta C_0^{\mu} = -\Delta C_{10}^{\mu}$ vs. SM

with current best estimate of charm contrib.

Alguero et al. '19 Ciuchini et al. '20 Li-Sheng Geng et al. '21 Altmanshofer & Stangl '21

The " $n\sigma$ " quoted by various th. groups (global fits) holds for specific NP hypotheses, motivated, but made *a posteriori* (after looking at the data) \rightarrow local significance [like resonance peak in a specific point of a given spectrum]

The arguments (of the non-believers...) against combining data:

- Even concentrating only on the clean observables, or even only in the LFU ratios, there can be different correlations depending on the underlying NP → you must explore all possible NP directions → Look Elsewhere Effect (LEE)
- The choice of the operator basis is arbitrary: how can the significance depend on the basis choice?
- You cannot do cherry-picking in selecting the observables and only few exhibit deviations → small significance once you include them al

We need to provide a solid estimate of the global significance

<u>A closer look to the data</u>

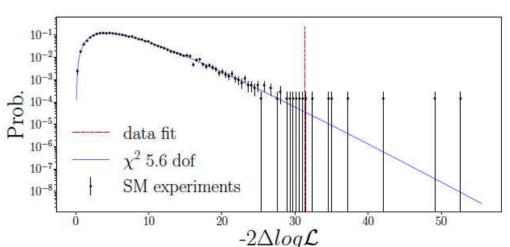
The "no" quoted by various th. groups (global fits) holds for specific NP hypotheses, motivated, but made a posteriori (after looking at the data) \rightarrow local significance

The global significance of observing any form of heavy new physics in $b \rightarrow sll$ can be estimated via the following procedure

- \triangleright Employ the most general eff. Lagrangian for $b \rightarrow sll$ [full basis with 9 C_i^{NP}]
- > Consider all the observables O_i with good sensitivity to (at least some of) the C_i^{NP} [taking into account conservative th. errors $\rightarrow d\Gamma/dq^2$ not good because of charm loops]
- \triangleright Generate pseudo-data to evaluate the O_i [assuming SM theory & exp. errors]
- ► Fit the simulated O_i with generic $C_i^{NP} \rightarrow \Delta \chi^2$ distribution of the pseudo-data

 \rightarrow Evaluate probability $P(\Delta \chi^2 > \Delta \chi^2_{\rm obs})$

Lancierini, GI, Owen, Serra, '21


probability that data randomly align to one of the possible NP directions

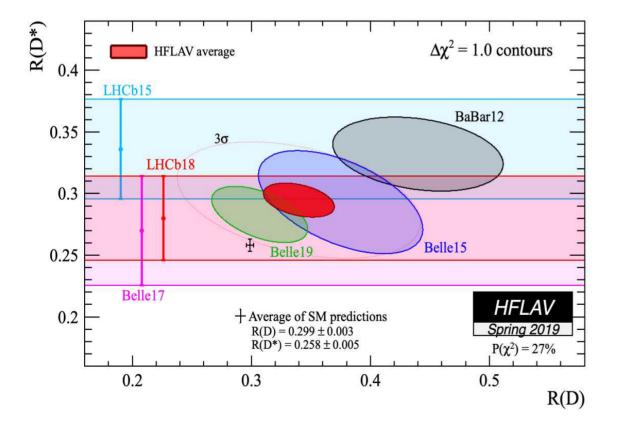
The " $n\sigma$ " quoted by various th. groups (global fits) holds for specific NP hypotheses, motivated, but made *a posteriori* (*after looking at the data*) \rightarrow *local significance*

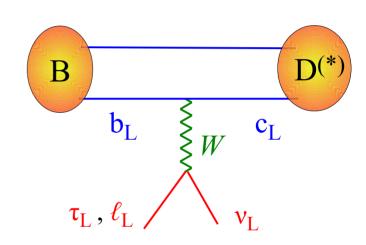
The *global significance* of observing any form of heavy new physics in $b \rightarrow sll$ can be estimated via the following procedure

- ▶ Employ the most general eff. Lagrangian for $b \rightarrow sll$ [full basis with 9 C_i^{NP}]
- ➤ Consider all the observables O_i with good sensitivity to (at least some of) the C_i^{NP} [taking into account conservative th. errors $\rightarrow d\Gamma/dq^2$ not good because of charm loops]
- \triangleright Generate pseudo-data to evaluate the O_i [assuming SM theory & exp. errors]
- ► Fit the simulated O_i with generic $C_i^{NP} \rightarrow \Delta \chi^2$ distribution of the pseudo-data
- > Evaluate probability $P(\Delta \chi^2 > \Delta \chi^2_{\text{obs}})$

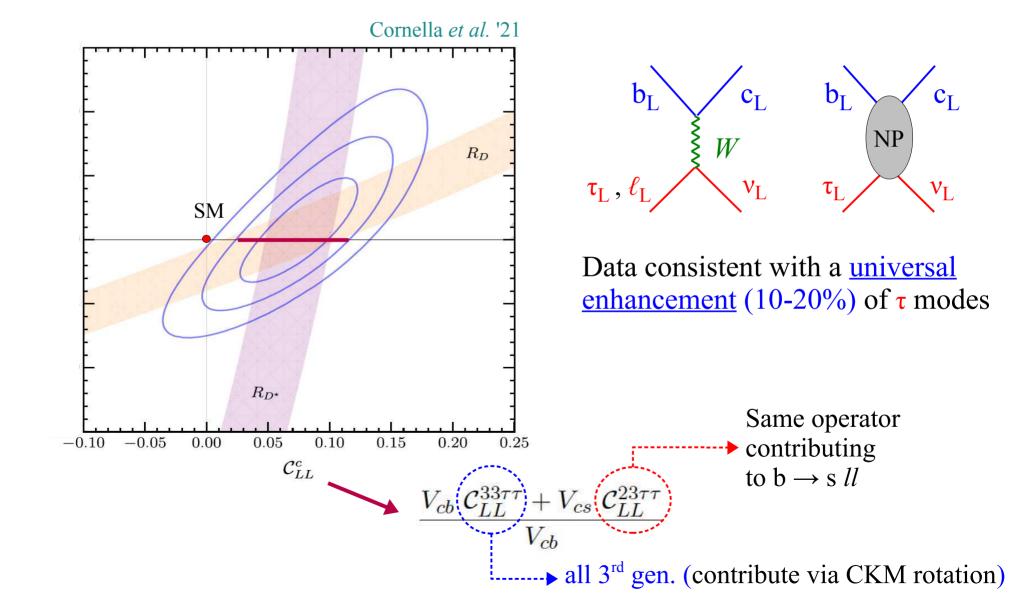
Coming back to the theory interpretation (\rightarrow *th. motivated fits are essential*!) Data point to (short-distance) NP effects in operators of the type

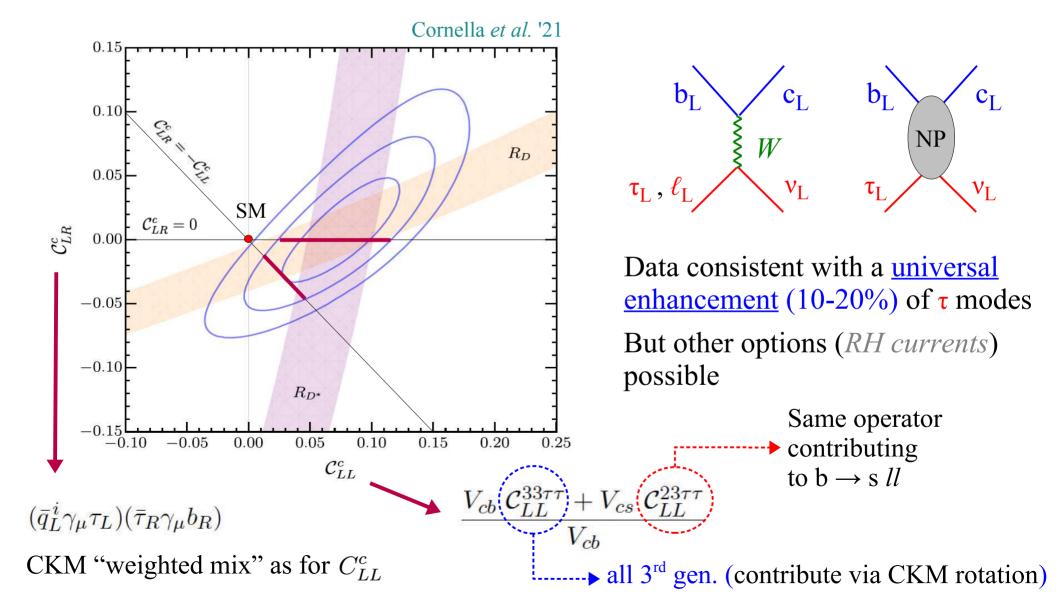
$$\mathcal{O}_{LL}^{ij\alpha\beta} = (\bar{q}_L^i \gamma_\mu \ell_L^\alpha)(\bar{\ell}_L^\beta \gamma_\mu q_L^j) = \frac{1}{2} \left[\mathcal{O}_{\ell q}^{(1)} + \mathcal{O}_{\ell q}^{(3)} \right]^{ij\alpha\beta}$$


$$b_L \qquad \mu_L \qquad \sim 2 \times 10^{-5} \, \text{G}_{\text{Fermi}}$$

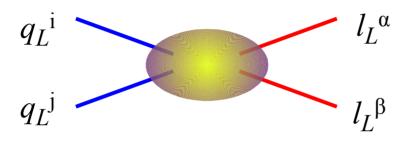

$$super-weak \\ interaction! \qquad \qquad \delta C_9^{23\mu\mu} \rightarrow \Delta C_9^\mu = -\Delta C_{10}^\mu$$

$$b_L \qquad \tau \qquad \qquad \delta C_9^{0} = -\Delta C_{10}^\mu$$


$$C_{LL}^{23\tau\tau} \rightarrow \Delta C_9^{0} = -\Delta C_{10}^\mu$$


$$R(X) = \frac{\Gamma(B \to X \tau \bar{\nu})}{\Gamma(B \to X \ell \bar{\nu})}$$
 $X = D \text{ or } D^*$

- Consistent results by three different exps. $\sim 3.1\sigma$ excess over SM (*D* and *D** combined)
- SM predictions quite "clean": hadronic uncertainties cancel (to large extent) in the ratios

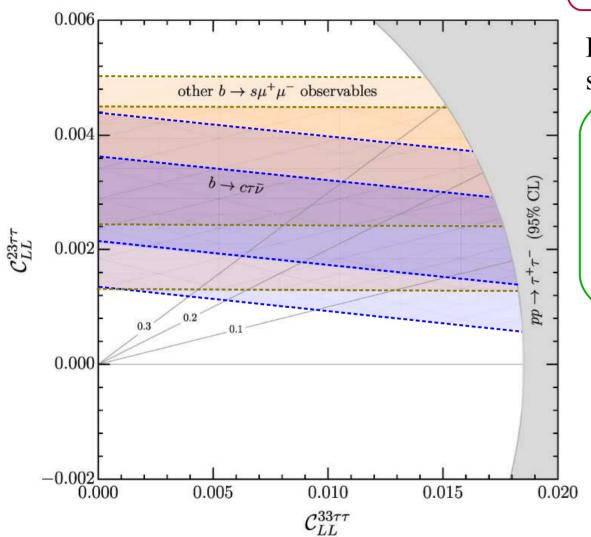


Hopes I. [EFT-type considerations]

- Anomalies are seen only in semi-leptonic (quark×lepton) operators
- We definitely need non-vanishing <u>left-handed</u> current-current operators although other contributions are also possible

Bhattacharya *et al.* '14 Alonso, Grinstein, Camalich '15 Greljo, GI, Marzocca '15 (+many others...)

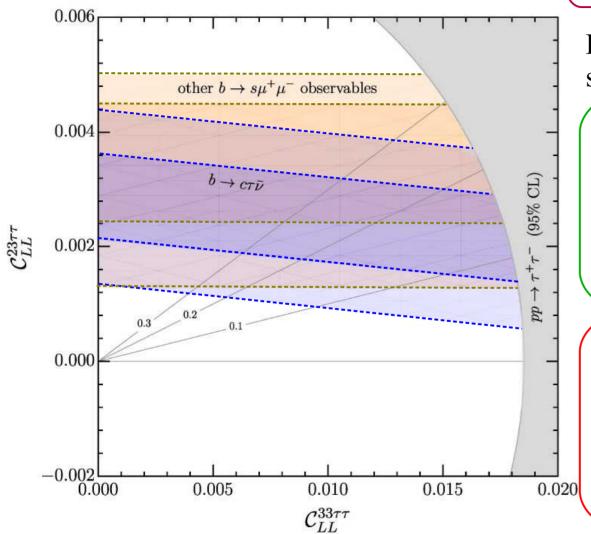
- Large coupling [competing with SM tree-level] in $bc \rightarrow l_3 v_3$ [R_D, R_{D*}]
- Small coupling [competing with SM loop-level] in bs $\rightarrow l_2 l_2$ [R_K, R_{K*}, ...]


$$T_{ij\alpha\beta} = (\delta_{i3} \times \delta_{3j}) \times (\delta_{\alpha 3} \times \delta_{3\beta}) + \text{for } 2^{\text{nd}} (\& 1^{\text{st}})$$

$$\text{generations}$$

$$Link \text{ to pattern}$$

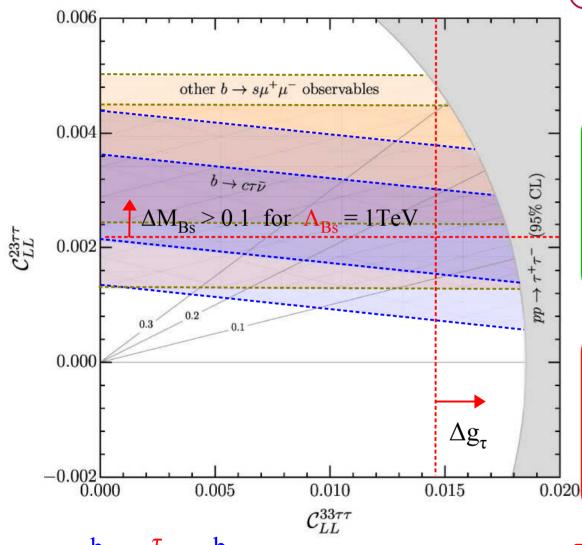
$$of \text{ the Yukawa}$$


$$couplings !$$

$$(\bar{q}_L^i \gamma_\mu \ell_L^\alpha)(\bar{\ell}_L^\beta \gamma_\mu q_L^j) = \frac{1}{2} \left[\mathcal{O}_{\ell q}^{(1)} + \mathcal{O}_{\ell q}^{(3)} \right]^{ij\alpha\beta}$$

Pattern emerging from data in $2 \leftrightarrow 3$ sector:

- $\sim 10^{-1} ext{ for each } 2^{\text{nd}} ext{ gen. } q_L ext{ or } l_L$ $\rightarrow |C^{23\mu\mu}| \sim 10^{-3} |C^{33\tau\tau}|$ $\rightarrow |V_{ts}| \sim 0.4 \times 10^{-1}$
- ✓ Nice consistency among the two sets of anomalies

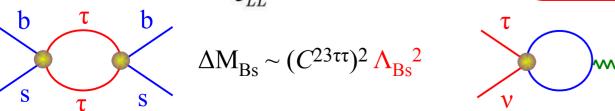

$$(\bar{q}_L^i \gamma_\mu \ell_L^\alpha)(\bar{\ell}_L^\beta \gamma_\mu q_L^j) = \frac{1}{2} \left[\mathcal{O}_{\ell q}^{(1)} + \mathcal{O}_{\ell q}^{(3)} \right]^{ij\alpha\beta}$$

Pattern emerging from data in $2 \leftrightarrow 3$ sector:

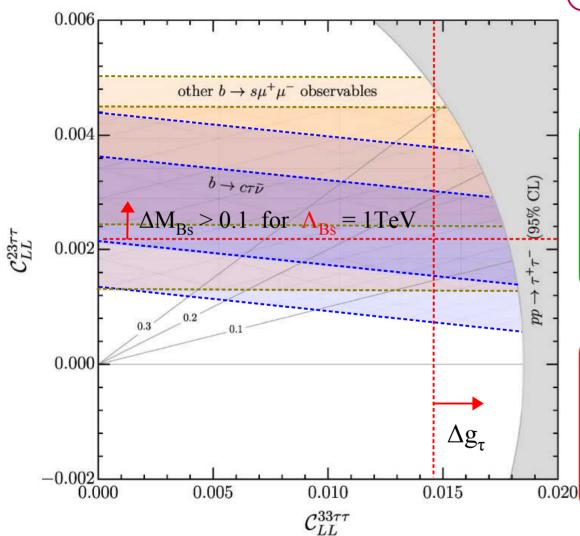
- $\sim 10^{-1}$ for each $2^{\rm nd}$ gen. q_L or l_L $\rightarrow |{\rm C}^{23\mu\mu}| \sim 10^{-3} |{\rm C}^{33\tau\tau}|$ $\rightarrow |{\rm V}_{\rm ts}| \sim 0.4 \times 10^{-1}$
- ✓ Nice consistency among the two sets of anomalies

Additional $\sim 10^{-2}$ ($\sim loop$) suppression for

- * Four-quarks ($\Delta F=2$)
- ***** Four-leptons $(\tau \rightarrow \mu \nu \nu)$
- * Semi-leptonic $O^{(1-3)}$ (b \rightarrow svv)


$$(\bar{q}_L^i \gamma_\mu \ell_L^\alpha)(\bar{\ell}_L^\beta \gamma_\mu q_L^j) = \frac{1}{2} \left[\mathcal{O}_{\ell q}^{(1)} + \mathcal{O}_{\ell q}^{(3)} \right]^{ij\alpha\beta}$$

Pattern emerging from data in $2 \leftrightarrow 3$ sector:

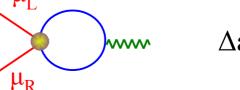

- $\sim 10^{-1}$ for each $2^{\rm nd}$ gen. q_L or l_L $\to |{\rm C}^{23\mu\mu}| \sim 10^{-3} |{\rm C}^{33\tau\tau}|$ $\to |{\rm V}_{\rm ts}| \sim 0.4 \times 10^{-1}$
- ▼ Nice consistency among the two sets of anomalies

Additional ~10⁻² (~loop) suppression for

- * Four-quarks ($\Delta F=2$)
- * Four-leptons $(\tau \rightarrow \mu \nu \nu)$
- * Semi-leptonic $O^{(1-3)}$ (b \rightarrow svv)

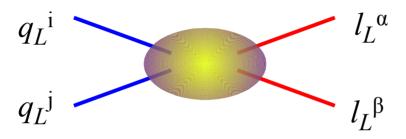
$$\Delta g_{\tau} \sim (C^{33\tau\tau}) \log(\Lambda/m_t)$$

N.B.: with this sets of operators \rightarrow tiny contribution to $a_{\mu} = (g-2)_{\mu}/2$


$$(\bar{q}_L^i \gamma_\mu \ell_L^\alpha)(\bar{\ell}_L^\beta \gamma_\mu q_L^j) = \frac{1}{2} \left[\mathcal{O}_{\ell q}^{(1)} + \mathcal{O}_{\ell q}^{(3)} \right]^{ij\alpha\beta}$$

Pattern emerging from data in $2 \leftrightarrow 3$ sector:

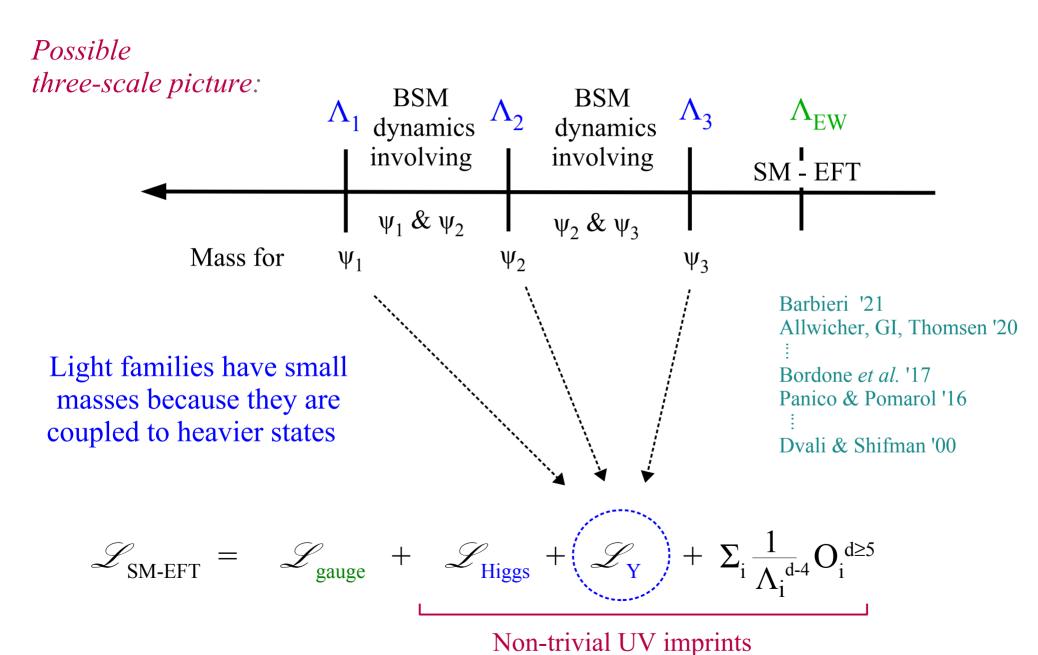
- $\sim 10^{-1}$ for each $2^{\rm nd}$ gen. q_L or l_L $\to |{\rm C}^{23\mu\mu}| \sim 10^{-3} |{\rm C}^{33\tau\tau}|$ $\to |{\rm V}_{\rm ts}| \sim 0.4 \times 10^{-1}$
- ▼ Nice consistency among the two sets of anomalies


Additional ~10⁻² (~loop) suppression for

- * Four-quarks ($\Delta F=2$)
- ***** Four-leptons $(\tau \rightarrow \mu \nu \nu)$
- * Semi-leptonic $O^{(1-3)}$ (b \rightarrow svv)

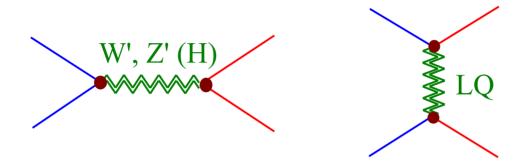
$$\Delta a_{\mu} << a_{\mu}^{SM-EW}$$

- Anomalies are seen only in semi-leptonic (quark×lepton) operators
- We definitely need non-vanishing <u>left-handed</u> current-current operators although other contributions are also possible

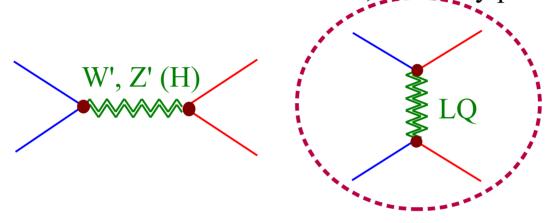


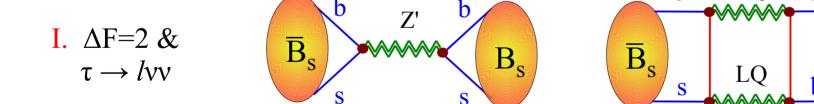
Bhattacharya *et al.* '14 Alonso, Grinstein, Camalich '15 Greljo, GI, Marzocca '15 (+many others...)

Non-trivial *flavor structure* (\leftrightarrow *approx. flavor symmetries*) not only to explain the pattern of the anomalies, but also to "protect" against too large effects in other low-energy observables


New TeV-scale interactions distinguishing the different families

Hopes II. [From EFT to simplified models]


Which mediators can generate the effective operators required for by the EFT fit? If we restrict the attention to tree-level mediators, not many possibilities...


 B_{s}

From EFT to simplified models

Which mediators can generate the effective operators required for by the EFT fit? If we restrict the attention to tree-level mediators, not many possibilities...

LQ (both scalar and vectors) have two general <u>strong advantages</u> with respect to the other mediators:

II. Direct 3^{rd} gen. LQ are also in better shape as far as direct searches are concerned (*contrary to Z'...*).

"Renaissance" of LQ models (to explain the anomalies, but not only...):

- Scalar LQ as PNG
 Gripaios, '10
 Gripaios, Nardecchia, Renner, '14
 Marzocca '18
- Vector LQ as techni-fermion resonances

Barbieri *et al.* '15; Buttazzo *et al.* '16, Barbieri, Murphy, Senia, '17

- Scalar LQ from GUTs & R SUSY

 Hiller & Schmaltz, '14; Becirevic *et al.* '16,

 Fajfer *et al.* '15-'17; Dorsner *et al.* '17;

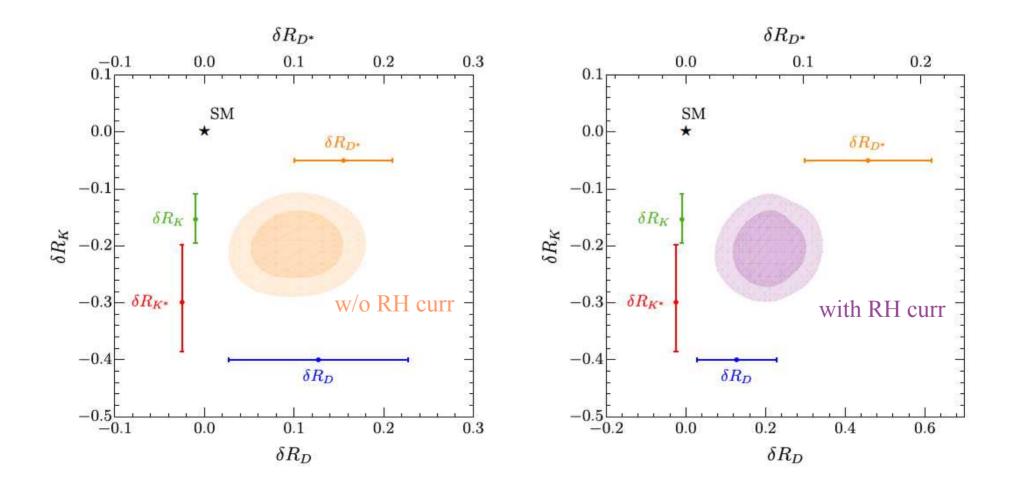
 Crivellin *et al.* '17; Altmannshofer *et al.* '17

 Trifinopoulos '18, Becirevic *et al.* '18 + ...
 - LQ as Kaluza-Klein excit.
 Megias, Quiros, Salas '17
 Megias, Panico, Pujolas, Quiros '17
 Blanke, Crivellin, '18
- Vector LQ in GUT gauge models

Assad *et al.* '17 Di Luzio *et al.* '17 Bordone et *al.* '17 Heeck & Teresi '18 + ...

Which LQ explains which anomaly?

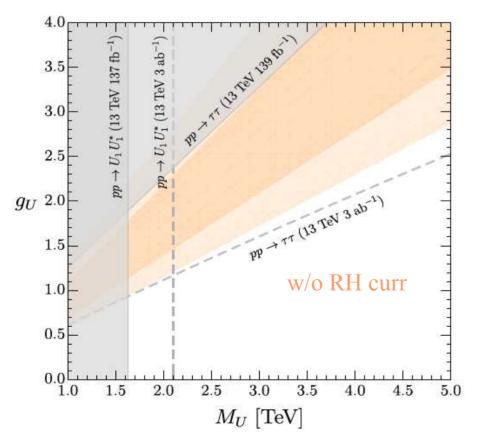
	Model	R _{K(*)}	$R_{D^{(*)}}$	$R_{K^{(*)}} \& R_{D^{(*)}}$
Scalars	$S_1 = (3, 1)_{-1/3}$	×	✓	×
	$R_2 = (3, 2)_{7/6}$	X	✓	×
	$\widetilde{R}_2=(3,2)_{1/6}$	×	X	×
	$S_3 = (3, 3)_{-1/3}$	✓	X	X
ctor	$U_1 = (3, 1)_{2/3}$ or $U_3 = (3, 3)_{2/3}$	✓	✓	✓
Ve	$\sigma U_3 = (3,3)_{2/3}$	✓	X	X

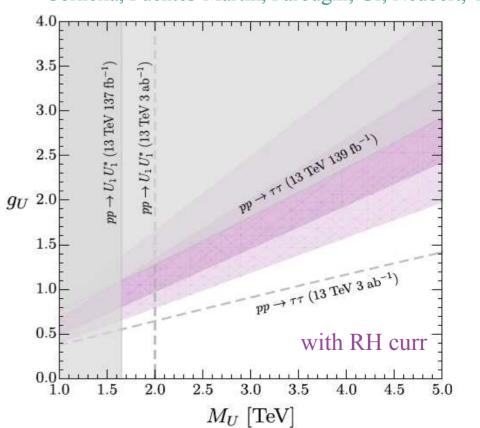

LQ of the Pati-Salam gauge group: $SU(4) \times SU(2)_L \times SU(2)_R$

Angelescu, Becirevic, DAF, Sumensari [1808.08179]

Considering the U₁ only

$$\mathcal{L} \supset \frac{g_U}{\sqrt{2}} U_1^{\mu} \left[\beta_{i\alpha}^L (\bar{q}_L^i \gamma_{\mu} \mathcal{E}_L^{\alpha}) - \beta_{i\alpha}^R (\bar{d}_R^i \gamma_{\mu} e_R^{\alpha}) \right] + \text{h.c.}$$

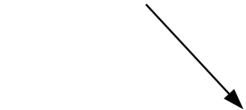

and fitting all low-energy data leads to an excellent description of present data:


Considering the U₁ only

$$\mathcal{L} \supset \frac{g_U}{\sqrt{2}} U_1^{\mu} \left[\beta_{i\alpha}^L (\bar{q}_L^i \gamma_{\mu} \mathcal{E}_L^{\alpha}) - \beta_{i\alpha}^R (\bar{d}_R^i \gamma_{\mu} e_R^{\alpha}) \right] + \text{h.c.}$$

and fitting <u>all low-energy data</u> leads to an excellent description of present data which is fully <u>consistent with high-pT searches</u> [within the reach of HL-LHC]:

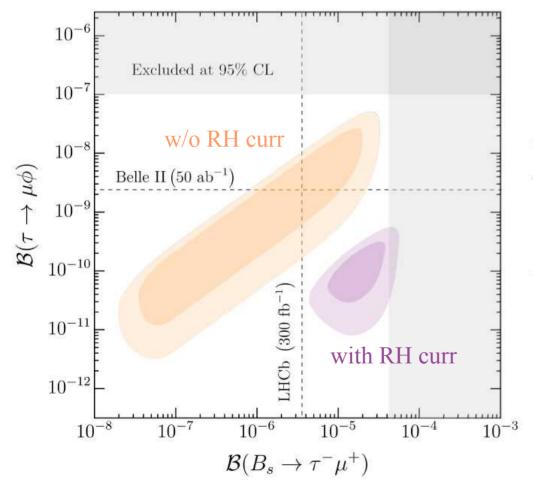
Cornella, Fuentes-Martin, Faroughi, GI, Neubert, '21


Beside direct searches, an essential role is still played by low-energy observables → many visible BSM effects expected, by consistency, virtually in all models addressing the anomalies

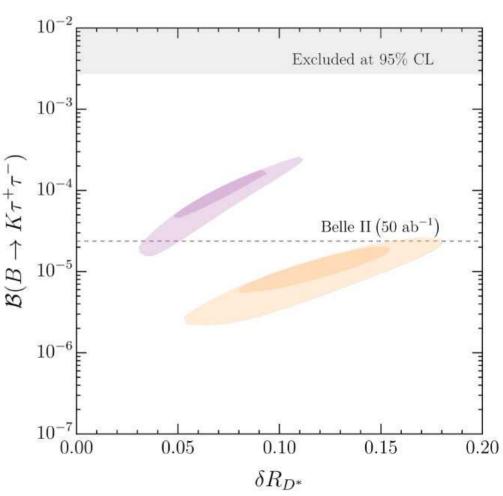
Main message: "super-reach" program for LHCb & Belle-II and other low-energy facilities. This program is essential to confirm/disproof the picture and, if confirmed..., to determine the flavor structure of the new sector.

I. EFT-based (model-independent) correlations on a large class of semi-leptonic processes

[
$$b \rightarrow d \mu \mu$$
, $b \rightarrow s \tau \tau$, $b \rightarrow s \tau \mu$, $b \rightarrow u \tau v$, ...]

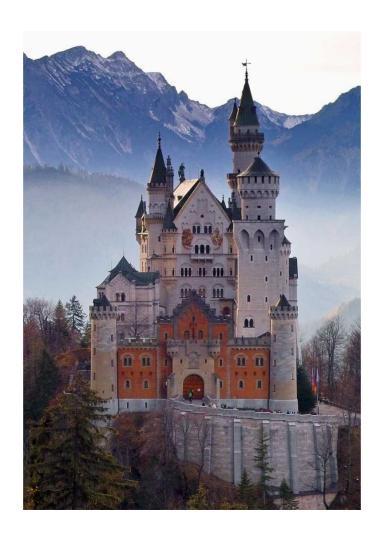


II. Model-dependent correlations for UV-sensitive observables


[
$$\Delta F=2$$
, $b \rightarrow s vv$, $\tau \rightarrow \mu \gamma$, $\tau \rightarrow 3\mu$, $\mu N \rightarrow eN$, ...]

Examples in class I.

A) LFV in $B \& \tau$ decays

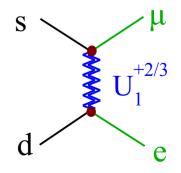


B) B \rightarrow X $\tau^+\tau^-$ decays

Cornella, Fuentes-Martin, Faroughi, GI, Neubert, '21

Dreams [speculations on UV completions]

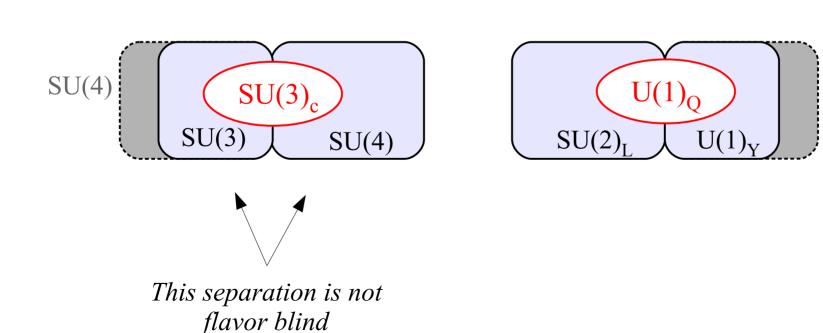
First observation: the Pati & Salam group, proposed in the 70's to unify quarks & leptons predicts the <u>only massive LQ</u> that is a good mediator for <u>both</u> anomalies:


Pati-Salam group: $SU(4)\times SU(2)_L\times SU(2)_R$

Fermions in SU(4):
$$\begin{array}{|c|c|c|c|c|c|} \hline Q_L^{\alpha} & & & & & & \\ \hline Q_L^{\alpha} & & & & & \\ \hline Q_L^{\beta} & & & & \\ \hline Q_L^{\gamma} & & & & \\ \hline Q_R^{\gamma} & & & & \\ \hline U_L & & & \\ \hline U_R & & & \\ \hline U_R & & & \\ \hline U_R & & & \\ \hline U_R^{\gamma} & & & \\ \hline U_R^{\gamma}$$

The problem of the "original PS model" are the strong bounds on the LQ couplings to 1st & 2nd generations [e.g. M > 200 TeV from $K_L \rightarrow \mu e$]

Attempts to solve this problem simply adding
extra fermions or scalars


Calibbi, Crivellin, Li, '17;
Fornal, Gadam, Grinstein, '18
Heeck, Teresi, '18

Second observation: we can "protect" the light families charging under SU(4) only the 3rd gen. or, more generally, "separating" the universal SU(3) component

PS group:
$$SU(4) \times SU(2)_{L} \times SU(2)_{R} \qquad \bullet \text{ flavor universality}$$

$$4321 \text{ models:} \qquad SU(4) \times SU(3) \times G_{EW} = \begin{cases} SU(2)_{L} \times SU(2)_{R} \\ SU(2)_{L} \times U(1)_{Y} \end{cases}$$

Second observation: we can "protect" the light families charging under SU(4) only the 3rd gen. or, more generally, "separating" the universal SU(3) component

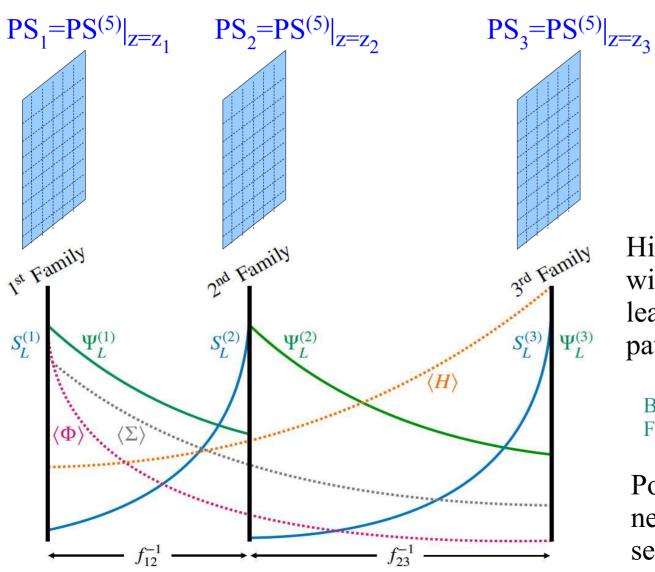
PS group:
$$SU(4) \times SU(2)_{L} \times SU(2)_{R} \qquad \text{flavor universality}$$

$$4321 \text{ models:} \qquad SU(4) \times SU(3) \times G_{EW} = \begin{cases} SU(2)_{L} \times SU(2)_{R} \\ SU(2)_{L} \times U(1)_{Y} \end{cases}$$

- Non-universality via mixing
- $SU(4)\times SU(3)$ $SU(4)_3\times SU(3)_{1.2}$
- Accidental U(2)⁵ flavor symm. in the gauge sect.

$$SU(3)\times G_{EW}\times G_{HC}$$
Barbieri, '17

$$SU(4)_h\times SU(4)_l\times G_{EW}\times G_{HC}$$
Fuentes-Martin & Stangl '20


$$SU(4)\times SU(3)\times G_{EW}$$
Di Luzio, Greljo, Nardecchia, '17

$$[PS]_{warped-5d, 3-branes}$$

$$[PS]_{warped-5d, 3-branes}$$

Fuentes-Martin *et al.* '20 + work in prog.

An ambitious attempt to construct a *full theory of flavor* has been obtained embedding the Pati-Salam gauge group into an extra-dimensional construction:

Flavor ↔ special position (topological defect) in an extra (compact) space-like dimension

Dvali & Shifman, '00

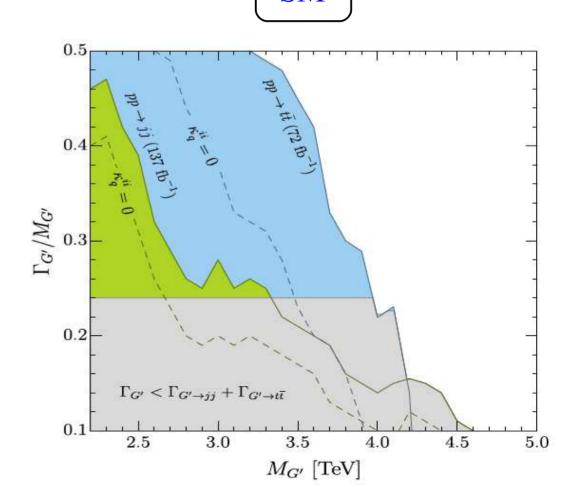
Higgs and SU(4)-breaking fields with oppositely-peaked profiles, leading to the desired flavor pattern for masses & anomalies

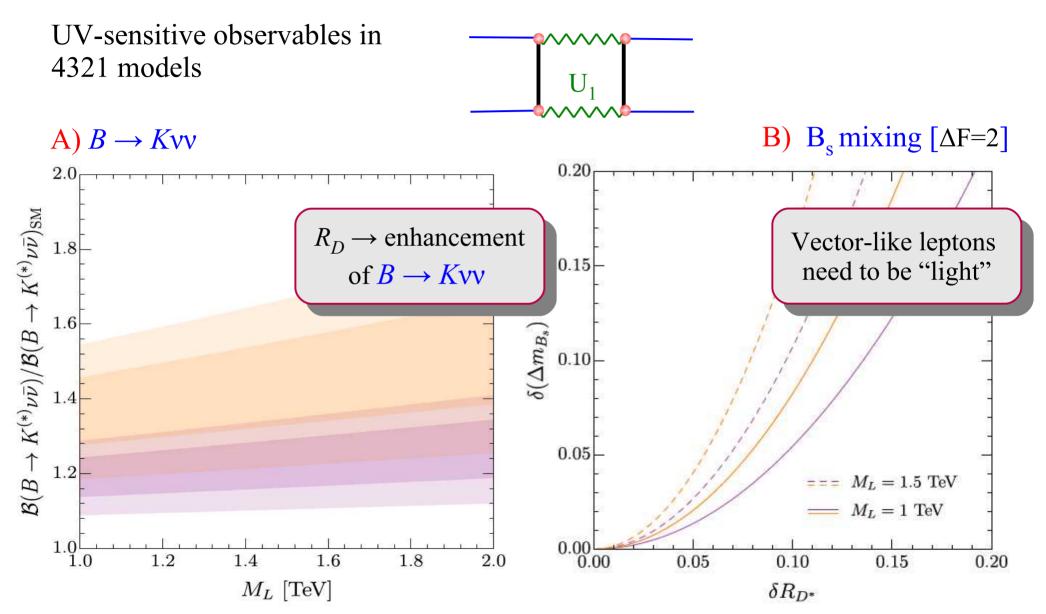
Bordone, Cornella, Fuentes-Martin, GI '17 Fuentes-Martin, GI, Pages, Stefanek '20

Possible to implement anarchic neutrino masses via an inverse see-saw mechanism

In most *PS-extended models* collider and low-energy pheno are controlled by the effective 4321 gauge group that rules TeV-scale dynamics Di Luzio, Greljo,

ider $SU(4)_3 \times SU(3)_{1+2} \times [SU(2)_L \times U(1)']$ $V_3 \qquad V_{1,2}$ $V_{1,2} \qquad Di Luzio, Greljo, Nardecchia, '17 <math>V_1$ the $V_2 \times U(1)'$


Despite the apparent complexity, the construction is highly constrained

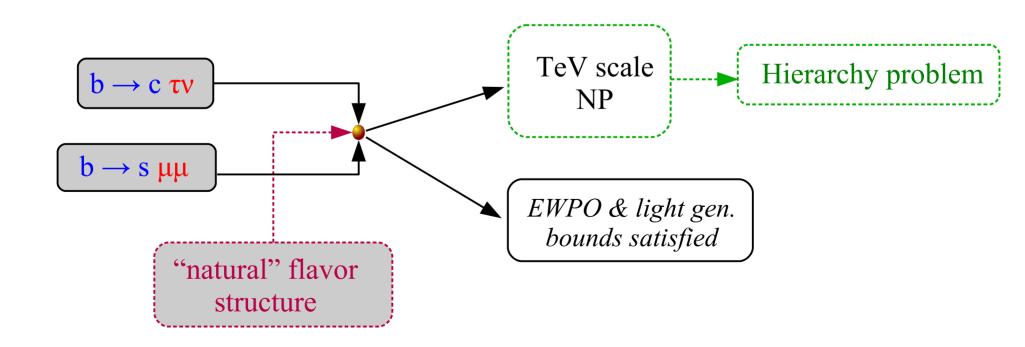

- Positive features the EFT reproduced
- Precise predictions for high-pT data

consistent with present data!

New striking collider signature: **G'** ("coloron" = heavy color octet)

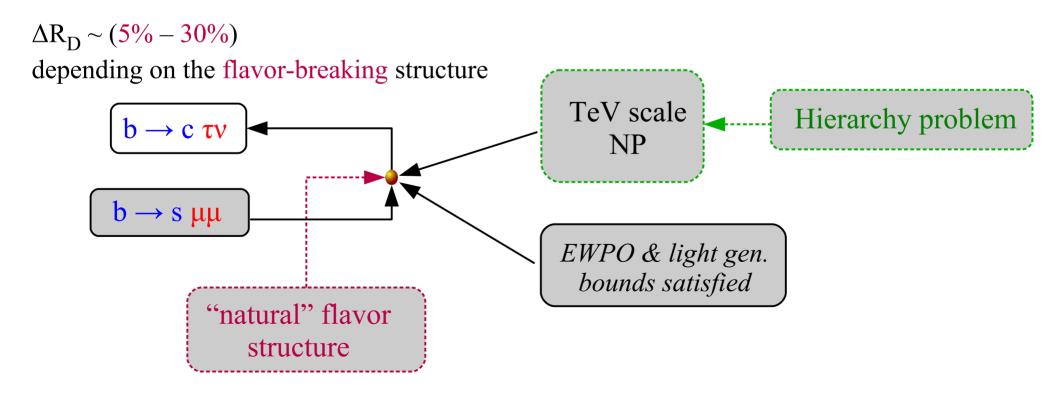
 \rightarrow strongest constraint on the scale of the model from pp $\rightarrow t \bar{t}$

Cornella, Fuentes-Martin, Faroughi, GI, Neubert, '21 Fuentes-Martin, GI, Konig, Selimovic, '20


Worries [...]

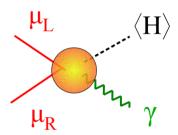
<u>Worries</u>

There are of course still several worries, and here the personal view becomes even more relevant.... So, let me mention a few of them:


• The $b \rightarrow clv$ anomalies are those putting a serious "pressure" on the parameter-space of the model, and their significance is still relatively weak. Why insisting?

Worries

There are of course still several worries, and here the personal view becomes even more relevant.... So, let me mention a few of them:


• The $b \rightarrow clv$ anomalies are those putting a serious "pressure" on the parameter-space of the model, and their significance is still relatively weak. Why insisting?

Worries

There are of course still several worries, and here the personal view becomes even more relevant.... So, let me mention a few of them:

• Not easy to reconcile the $(g-2)_{\mu}$ anomaly with both flavor anomalies and, more generally, with models with a "natural" flavor structure (\leftrightarrow Y_{SM}). Is $(g-2)_{\mu}$ suggesting something a different way?

Maybe.... examples of recent "attempts":

- $a_{\mu} \oplus R_{K}$ with special role of muons [$U(1)_{B-3L_{\mu}} \subset G$] Greljo, Stangl, Thomsen '21
- $-a_{\mu} \oplus R_{K} \oplus R_{D}$ with 2 scalars $[S_{1} + \phi^{+}]$ and peculiar flavor struct. Marzocca, Trifinopoulos '21

But... $(g-2)_{\mu}$ is more "flexible" (no generation change, necessary loop-level) \rightarrow could come from light NP: no obvious connection to the flavor anomalies

<u>Worries</u>

There are of course still several worries, and here the personal view becomes even more relevant.... So, let me mention a few of them:

• The UV models explaining both anomalies seems to be rather baroque (*many new fields & parameters...*). Is this a problem?

I don't think this is a valid objection: the models are indeed non-trivial extensions of the SM, but they achieve several goals (beside the anomalies)

- *▼ Unification of quarks & leptons*
- **▼** *Explanation/justification of the flavor hierarchies*
- ✓ Stabilization/amelioration of the Higgs hierarchy problem

And, beside a few exceptions, there are no serious tunings

[most serious: ~ 10% down-alignment (flavor sect.)+ little hierarchy (Higgs)]

<u>Worries</u>

There are of course still several worries, and here the personal view becomes even more relevant.... So, let me mention a few of them:

• The UV models explaining both anomalies seems to be rather baroque (*many new fields & parameters...*). Is this a problem?

I don't think this is a valid objection: the models are indeed non-trivial extensions of the SM, but they achieve several goals (beside the anomalies)

- *▼ Unification of quarks & leptons*
- **▼** *Explanation/justification of the flavor hierarchies*
- ✓ Stabilization/amelioration of the Higgs hierarchy problem

And, beside a few exceptions, there are no serious tunings [$most\ serious: \sim 10\%\ down-alignment\ (flavor\ sect.) + little\ hierarchy\ (Higgs)\]$

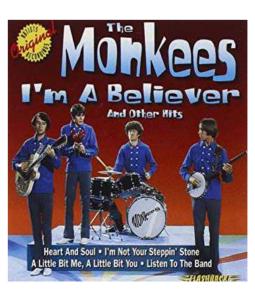
• Still, I must admit there is a growing number of observables which are "just around the corner" (both at high-pT and at low-energies...). This starts to be disturbing... [\leftrightarrow key connection with central value of R_D]

Conclusions

- The statistical significance of the LFU anomalies is growing: in the $b \rightarrow sll$ system the chance this is a pure statistical fluctuation is marginal...
- <u>If combined</u>, the two sets of anomalies point to non-trivial flavor dynamics around the TeV scale, involving mainly the 3^{rd} family \rightarrow connection to the origin of flavor [multi-scale picture at the origin of flavor hierarchies]
- <u>No contradiction</u> with existing low- & high-energy data, <u>but new non-standard effects should emerge soon</u> in both these areas

A lot of fun ahead of us...

(both on the exp., the pheno, and the model-building point of view)


Conclusions

- The statistical significance of the LFU anomalies is growing: in the $b \rightarrow sll$ system the chance this is a pure statistical fluctuation is marginal...
- <u>If combined</u>, the two sets of anomalies point to non-trivial flavor dynamics around the TeV scale, involving mainly the 3rd family → connection to the origin of flavor [multi-scale picture at the origin of flavor hierarchies]
- <u>No contradiction</u> with existing low- & high-energy data, <u>but new non-standard effects should emerge soon</u> in both these areas

A lot of fun ahead of us...

(both on the exp., the pheno, and the model-building point of view)

(already since quite some time...)