What can we learn from R(K) beyond it being a null test of the SM?

BSM model building

Admir Greljo, Peter Stangl

 u^{b} universität bern

Beyond the Flavour Anomalies II, 20.04.2021

Models of **Muon Anomalies**

The Muon g-2 Collaboration, 2104.03281

Models of **Muon Anomalies**

The Muon g-2 Collaboration, 2104.03281

• A sketch of a minimal structure:

$$\begin{array}{ll} R(K^{(*)}), b \to s\mu\mu & \text{tree-level} \\ (g-2)_{\mu} & \text{one-loop} \end{array} \left\{ \begin{array}{ll} LQS \& Z'S \\ OR & OR \end{array} \right\}$$

Greljo, Stangl, Thomsen, 2103.13991

For both at one-loop see e.g. : Arcadi, Calibbi, Fedele, Mescia, 2104.03228

• Constraints:

I. Neutral meson mixing:

$$\sim \frac{g_{bs}^2}{m_{Z'}^2} \lesssim \frac{\left|\frac{M_{12}}{M_{12}^{SM}} - 1\right| / 10\%}{(244 \,\text{TeV})^2} \qquad \begin{array}{c} \left|\frac{M_{12}}{M_{12}^{SM}} - 1\right| \approx 10\% \\ & \downarrow \\ \frac{g_{\mu\mu}}{m_{Z'}} \gtrsim \frac{1}{5.3 \,\text{TeV}} \end{array}$$

2. Neutrino trident production $\nu\gamma \rightarrow \nu\mu\mu$

$$\frac{g_{\mu\mu}}{m_{Z'}} \lesssim \frac{1}{0.5 \text{ TeV}}$$

 $(b \rightarrow s\ell\ell)$ fit suggests left-handed lepton doublet is involved)

• Resonant and non-resonant searches in $pp \rightarrow \mu^+\mu^-$

95% CL limits on MFV Z' from p p $\rightarrow \mu^+ \ \mu^-$

Greljo, Marzocca, arXiv:1704.09015

 MFV-like Z'-quark couplings already excluded

• Resonant and non-resonant searches in $pp \rightarrow \mu^+\mu^-$

95% CL limits on MFV Z' from p p $\rightarrow \mu^+ \ \mu^-$

Greljo, Marzocca, arXiv:1704.09015

 MFV-like Z'-quark couplings already excluded

> e.g. $U(1)_{B-L}$ e.g. $U(1)_{B_3-L_2}$

- UV Completions:
 - Vector-like quarks

Altmannshofer, Gori, Pospelov, Yavin, 1403.1269

 $L_{\mu} - L_{\tau}$

8

 μ^+

 B_s - \overline{B}_s mixing loop-suppressed

B_s - \overline{B}_s mixing loop-suppressed

Leptoquarks: direct constraints

- QCD pair production
- Direct searches with jjll or jjvv final states

 $m_S \gtrsim 1.5 \,\mathrm{TeV}$ $m_V \gtrsim 2.0 \,\mathrm{TeV}$

Spin	G _{SM}	Name	Characteristic process	$R_{K^{(*)}}$	
0	$(\bar{3},1)_{1/3}$	S ₁	$b_{L} \xrightarrow{\nu} S_{1} \xrightarrow{\mu_{L}} t$ $s_{L} \xrightarrow{\nu} S_{1} \xrightarrow{\mu_{L}} \mu_{L}$	X	requires too large couplings
0	$(\bar{3},3)_{1/3}$	S ₃	$b_{L} \rightarrow \mu_{L}$ $S_{3} \rightarrow \mu_{L}$	\checkmark	
0	(3,2) _{7/6}	R ₂	$b_{L} \xrightarrow{t} R_{2} \mu_{L}$	X	tension with LHC limits
1	(3,1) _{2/3}	<i>U</i> ₁	$b_{L} \xrightarrow{\mu_{L}} b_{L}$	\checkmark	
1	(3,3) _{2/3}	U ₃	$b_{L} \xrightarrow{U_{3}} \mu_{L}$ $s_{L} \xrightarrow{U_{3}} \mu_{L}$	\checkmark	

cf. Angelescu, Bečirević, Faroughy, Jaffredo, Sumensari, arXiv:2103.12504

The
$$(g-2)_{\mu}$$
 input

• Observation I:

Almost exact lepton flavor symmetry \implies Gauged lepton flavour $U(1)_{X_{\mu}}$

The
$$(g-2)_{\mu}$$
 input

• Observation I:

Almost exact lepton flavor symmetry \implies Gauged lepton flavour $U(1)_{X_{\mu}}$

• Observation II:

New LFUV force \implies Consistent with R(K)

$$U(1)_{X_{\mu}} \sim \mathcal{O} \stackrel{e}{\checkmark} \stackrel{\mu}{\checkmark} \stackrel{\tau}{\checkmark}$$

The
$$(g-2)_{\mu}$$
 input

• Observation I:

Almost exact lepton flavor symmetry \implies Gauged lepton flavour $U(1)_{X_{\mu}}$

• Observation II:

New LFUV force \implies Consistent with R(K)

$$U(1)_{X_{\mu}} \sim \mathcal{O} \stackrel{e}{\checkmark} \stackrel{\mu}{\checkmark} \stackrel{\tau}{\checkmark}$$

• Many attempts in the literature, mostly either $(g - 2)_{\mu}$ or R(K): hep-ph/0104141, hep-ph/0110146, 1311.0870, 1403.1269, 1406.2332, 1501.00993, 1611.02703, 1705.03858, 1705.00915, 1712.04871, 1809.01158, 1909.02021, 2007.15016, 2009.02197, 2104.03281

• $SM \times U(1)_{B-3L_{\mu}}$ gauge symmetry

• $SM \times U(1)_{B-3L_u}$ gauge symmetry

• $SM \times U(1)_{B-3L_u}$ gauge symmetry

• $SM \times U(1)_{B-3L_{\mu}}$ gauge symmetry

SM

	SU(3)c	SU(2)L	$\bigcup (1)_{Y}$	(1) B-3 LM
Q_{L}	3	2	1/6	1/3
L	I	2	-1/2	20,-3,03
UR	3	I	2/3	1/3
dR	3	l	-1/3	1/3
VR	1	l	0	20,-3,03
$\mathcal{C}_{\mathcal{R}}$	l	l	-1	20,-3,03
+1	1	2	1/2	0
Ð	1	l	0	3
S3	3	3	1/3	8/3

Muon force

 $\mathcal{L} \supset Q_L L_L^{(2)} S_3$ Greljo, Stangl, Thomsen, 2103.13991

Muon force

Muoquark

- What $U(1)_{X_{\mu}}$ does to a leptoquark?
 - Interacts only with muons

 $\mathcal{L} \supset Q_L L_L^{(2)} S_3$

• No proton decay up to dim-6

• Add $S_1 = (\bar{\mathbf{3}}, \mathbf{1}, 1/3)_{8/3}$ muoquark for $(g - 2)_{\mu}$. Decouple $U(1)_{B-3L_{\mu}}$.

Greljo, Stangl, Thomsen, 2103.13991

• Add $S_1 = (\bar{\mathbf{3}}, \mathbf{1}, 1/3)_{8/3}$ muoquark for $(g - 2)_{\mu}$. Decouple $U(1)_{B-3L_{\mu}}$.

Greljo, Stangl, Thomsen, 2103.13991

• Add $S_1 = (\bar{\mathbf{3}}, \mathbf{1}, 1/3)_{8/3}$ muoquark for $(g - 2)_{\mu}$. Decouple $U(1)_{B-3L_{\mu}}$.

• Add $S_1 = (\bar{\mathbf{3}}, \mathbf{1}, 1/3)_{8/3}$ muoquark for $(g - 2)_{\mu}$. Decouple $U(1)_{B-3L_{\mu}}$.

- $\mathcal{L} \supset \eta_i^{3\mathrm{L}} \, \overline{q}_{\mathrm{L}}^{\mathrm{c}\,i} \ell_{\mathrm{L}}^2 \, S_3 + \eta_i^{1\mathrm{L}} \overline{q}_{\mathrm{L}}^{\mathrm{c}\,i} \ell_{\mathrm{L}}^2 S_1 + \eta_i^{1\mathrm{R}} \overline{u}_{\mathrm{R}}^{\mathrm{c}\,i} \mu_{\mathrm{R}} S_1$
- Global fit
 - One-loop matching to SMEFT from 2003.12525
 - 399 observables in smelli 1810.07698

• Add $S_1 = (\bar{\mathbf{3}}, \mathbf{1}, 1/3)_{8/3}$ muoquark for $(g - 2)_{\mu}$. Decouple $U(1)_{B-3L_{\mu}}$.

- Global fit
 - One-loop matching to SMEFT from 2003.12525
 - 399 observables in **smelli** 1810.07698
 - Finite naturalness Higgs mass Muon Yukawa $\delta y_{\mu} = -\frac{3}{(4\pi)^2} \left(1 + \ln \frac{\mu_M^2}{M_1^2}\right) \eta_i^{1L*} y_u^{ij} \eta_j^{1R}$

Interesting for collider searches.

• RGE

The parameters of the model are radiatively stable and can be evolved to the Planck scale without inconsistencies.

Classification of models

	Type A	Type B	Type C
$\boxed{R_{K^{(*)}},b\to s\mu\mu}$	S_3	S_3	heavy X
$(g-2)_{\mu}$	S_1/R_2	light X	S_1/R_2

TABLE I. Three types of *muoquark* models, which can address the muon anomalies for a variety of lepton-flavored $U(1)_X$ gauge groups.

Questions?